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Foreword

“This is a truly wonderful book, which unfortunately our library is too small
to contain.” - Pierre de Fromage

In the spring of 1993, a 10-day workshop was held at Heriot-Watt University,
Edinburgh, under the auspices of the International Centre for Mathematical
Sciences, on Geometric and Combinatorial Methods in Group Theory. This
volume contains papers contributed by participants at the workshop. Some
report work presented by the authors in lectures at the conference, and all
of them are on topics closely related to the central theme of the conference.
Survey articles were kindly contributed by S M Gersten, R I Grigorchuk,
P H Kropholler, A Lubotzky, A A Razborov and E Zelmanov, who were
among the invited conference speakers.

The problem section at the end of the book is made up of problems presented
at a problem session on the final day of the conference. The session was
chaired by S J Pride, and the list was compiled using notes taken by S Wreth
together with written comments from the presenters of the problems.

The editors are deeply indebted to V Metaftsis and S Wreth for their invalu-
able assistance in the running of the conference. We could not have succeeded
without their help. In addition, we are grateful to the many other people
who helped to make the conference a success. These include the Scientific
Committee of Steve Gersten, Steve Pride and Sasha Razborov; John Ball,
Frank Donald and Elmer Rees of the International Centre for Mathematical
Sciences; and Patricia Hampton, Isobel Johnson, Barbara Kollmer, Markus
Kreer, and Donald Smith of Heriot-Watt University. It is a pleasure to record
our gratitude to them, as well as to those who gave conference lectures or
merely took part. We are also grateful to the Science and Engineering Re-
search Council, who provided the principal funding for the conference under
grant number GR/H57219, and to the Royal Society and the Royal Society
of Edinburgh for additional funding.

The production of the present volume could not have taken place without the
valuable help of Roger Astley, David Tranah and their colleagues at CUP, not
{o mention an army of anonymous referees, and of course the contributors
themselves. To all of them we offer our thanks.

The Editors
July 1994.
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On bounded languages and the
geometry of nilpotent groups

MARTIN R. BRIDSON AND ROBERT H. GILMAN !

Abstract

Bounded languages are a class of formal languages which includes
all context free languages of polynomial growth. We prove that if a
finitely generated group G admits a combing by a bounded language
and this combing satisfies the asynchronous fellow traveller property,
then either G is virtually abelian, or else G contains an element g of
infinite order such that ¢® and g™ are conjugate for some 0 < n < m.

The introduction of automatic groups [5] has precipitated a host of ques-
tions about the roles which formal language theory and geometry play in
the study of normal forms for finitely generated groups, particularly groups
which arise in geometric settings. For example, when a group G is given as
the fundamental group of a compact Riemannian manifold, words in a fixed
set of generators for G have a natural interpretation as paths in the universal
cover of the manifold; it is natural to ask how the geometry of the manifold
is reflected in the linguistic complexity of normal forms for elements of G.
The results presented here and in [3] can be interpreted as providing a partial
answer to this question in the case where the manifold under consideration is
a quotient of a nilpotent Lie group.

It has become customary in geometric group theory to refer to a set of
normal forms for elements in a finitely generated group as a combing of the
group. There is much work to be done on the problem of determining how
various geometric and linguistic constraints on the type of combings which a
group admits are reflected in the structure of the group. The results presented
here contribute to this task. These results arose in the course of our work on
the structure of normal forms for elements in 3-manifold groups [3].

Theorem A  If a finitely generated group G' admits a combing by a bounded
language, and if this combing satisfies the asynchronous fellow traveller prop-
erty, then either

1. G is virtually abelian, or

2. there is an element g € G of infinite order such that for some m,n with
0<m<n, g™ and g" are conjugate in G.

'The first author was supported in part by NSF grant DMS-9203500 and FNRS (Suisse).
T'he sccond author thanks the Institute for Advanced Study for its hospitality while this
paper was being written



2 Bounded languages and geometry of groups

Bounded languages are defined in Section 1, as is the asynchronous fellow
traveller property.

We do not know of an example for which the above possibility (2) occurs.
Certainly, one can exclude possibility (2) by placing restrictions on the class
of groups considered. For example, it is shown in [1] that semihyperbolic
groups, which are defined in terms of the type of combings which they admit,
do not contain elements of the type described in possibility (2). (The class
of semihyperbolic groups includes all biautomatic groups [8], and all groups
which act properly and cocompactly by isometries on any 1-connected space
of non-positive curvature, as all finitely generated virtually abelian groups

do.)

Corollary B A semihyperbolic group G admits a combing by a bounded
language with the asynchronous fellow traveller property if and only if G is
virtually abelian.

Theorem A is proved by reducing it to:

Theorem C  If a finitely generated virtually nilpotent group G admits a
combing by a bounded language, and if this combing satisfies the asynchronous
fellow traveller property, then G is virtually abelian.

Theorem C plays an important role in [3], where it is used to show that
a virtually nilpotent group with a context free combing satisfying the asyn-
chronous fellow traveller property is virtually abelian. In [3] we presented
a purely algebraic proof of Theorem C, but this result is essentially a fact
about the geomeiry of nilpotent groups. Here we try to present as accessible
an account of this geometry as possible.

The results of this article were presented by one of the authors in April
1993 at the meeting on Geometric Methods in Group Theory hosted by the
ICMS in Edinburgh. We would like to thank Andrew Duncan, Nick Gilbert
and Jim Howie, not only for arranging such an enjoyable conference, but also
for the courteous and efficient way in which they have behaved as editors of
these proceedings.

1. Definitions and Preliminary Results

Throughout this paper A stands for a finite set and A* for the free monoid
on A. The length of a word w € A* shall be denoted |w|. The empty word is
denoted €. A formal language is just a subset L C A*. A language L is said
to be bounded if there are words w,...,w, in A* such that every w € L can
be written w = wy™ ... w* for some choice of non-negative integers m; € N,
Bounded languages were introduced by Ginsburg and Spanier [7].

Let G be a finitely generated group. A choice of generators for G is a
map g : A — G from a finite set which extends to a surjective monoid
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homomorphism g : A* - G. We assume that A is closed under formal
inverse and that formal inverses are extended to A* in the usual way. We
shall usually write @ rather than p(w) for the image in G of a word w, and
more generally X for the image of a set of words X.

A combing of G is a language L C A* which projects bijectively to G. We
shall often use the letter C to denote a language which is a combing. If, in
addition, C is a bounded language, then we shall refer to it as a combing of
G by a bounded language. It is an easy exercise to check that if a finitely
generated group admits a combing by a bounded language with respect to
one choice of generators, then it admits such a combing with respect to every
choice of generators.

Combings by bounded languages arise naturally when considering normal
forms for polycyclic groups. For example, if {1} = Go C --- C G, = G is
a normal tower for GG, with each G;/G;_; cyclic, then arguing by induction
on n one may assume that G,.; admits a combing by a bounded language,
and if we fix an element @ € G — G,,_, whose image generates G, /G,_1, then
by appending suitable powers of a to the words in the combing for G,,—; we
obtain a combing of G by a bounded language.

Any choice of generators determines a word metric on G by d(g,h) =
min{|w| | w € A*, u(w) = g~ 'h}. It is straightforward to check that d is in-
deed a metric and that it is left-invariant in the sense that d(ghi,ghs) =
d(hy,h2) for all g,hy,hy € G. The metrics d;,d, determined by differ-
ent choices of generators are Lipschitz equivalent; that is, (1/¢)di(g,k) <
d2(g, k) < cdi(g, h) for some constant c.

For a given choice of generators, each word w = a;...a, determines a
discrete path p,, : N — G given by

1 ifn=0
pw(t)z{m ifl<t<n
w fn>t

Henceforth we shall identify w with p, and often talk of words as discrete
paths in G. The synchronous distance D, between two words w,v € A
is the maximum separation of points (fellow-travellers) traversing the two
corresponding paths at unit speed.

Dy(w,v) = max{d(pu(t), p.(t))}-

"There is also a notion of asynchronous distance in which each point is allowed
to stop for a while. The standard technical device to encode this idea is the set
R of all unbounded maps p : N — N such that p(0) =0, and p(rn + 1) = p(n)
or p(n) + 1. The asynchronous distance is defined to be:

Dafrow)  min, {max{ d(pu(p(m)), pulpa(n)) } ). (L1)

Prpst R



4 Bounded languages and geometry of groups

We shall be extensively concerned with constraints of the form D,(w,v) < K.
This inequality can be rephrased as follows: There exist sequences of prefixes

Lo=6 1y .-, IN=W Yo =6 Y1, .- Yn =9
of w and v respectively, such that for all z,
lzi| < lziga] < lzil +1 |3l < lyia] < il +1 and  d(Z,3) < K. (1.2)

A language L C A is said to satisfy the synchronous fellow traveller property
if there exists a constant K > 0 such that for all w,v € L, if d(w,7) < 1
then D,(w,v) < K. The asynchronous fellow traveller property is defined
analogously. Throughout this paper we shall retain the symbol K to denote
the constant in the definition of the (synchronous or asynchronous) fellow
traveller property.

Remark. Notice that if L C A* satisfies the asynchronous fellow traveller
property, than so does every sublanguage of it. Since a sublanguage of a
bounded language is itself bounded, we see that the hypothesized existence of
the combing in Theorem A could be replaced by the existence of any bounded
sublanguage of A* which maps onto G and satisfies the asynchronous fellow
traveller property.

We claim that D, and D, are pseudometrics on A*; that is, they satisfy all
the requirements of a metric except the requirement that distinct points be
a positive distance apart. This assertion is an immediate consequence of the
following lemma, whose proof we leave to the reader.

Lemma 1.1

1. R is closed under composition.

2. If Dy(w,v) is realized by py and p; as in (1.1), then it is also realized
by p1 0 p and py 0 p, where p € R is arbitrary.

3. Given py, p2 € R, there exist p’', p" € R such that pyo p' = py0p”.
p1, P o prop =pop

We note some elementary properties of D,.

Lemma 1.2

1. If w = 9, then Dy(wu,vu’) < max{D,(w,v), Ds(u,u’)} for all u,u’ €
A

2. If v is obtained from w by deleting any number of disjoint subwords
zz71, then Dy(w,v) < |z|.
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3. Ifw =0T !, then Dy(w™, zv"2™ ) < Dy(w,zvz~t)+|z| for alln € N.

Proof. From a geometric viewpoint, assertion (1) is clear. An algebraic proof
can be obtained using (1.2): Let K = max{D,(w,v), D,(u,u’)}; multiply the
sequences of prefixes used to compute D,(u,u’) on the left by w and v, then
append them to the sequences for D,(w,v) to get sequences of prefixes for wu
and vu'; if u;, u! is a pair of prefixes for u, v’ then d(wu;, vu}) = d(u;,u;) < K,
because W = U and d is left invariant.

(2) is proved by estimating D,(w, v) using the unit speed parametrization
p(n) = n for p,, and the parametrization for p, which causes a point traversing
the image of p, to move with unit speed except for remaining stationary
during the period in which p,, traces out the subword zz=1. Part (3) follows
from (1), (2) and the triangle inequality for D,.

It is shown in [3], Proposition 1.3 that every context free language of poly-
nomial growth is bounded. We will need the following additional result on
bounded languages [3], Lemma 1.4.

Lemma 1.3 FEvery bounded language L C A* can be expressed as the union
of finitely many bounded sublanguages L; such that for each I there exists an
integer r and a choice of words uyy,. .., UiV, .. ,0, € A* with

Ly = {vioufivia - . . ujjvs | (na,...,n.) € Si},
where S; C N™ is empty if r = 0 (in which case L; = {vio}) and otherwise
there exist r—tuples tn S; whose smallest entry is arbitrarily large.
2. Reduction of Theorem A to Theorem C

Throughout this section C will denote the combing hypothesized in Theo-
rem A. We begin by showing that we are free to assume that C enjoys certain
extra properties. Since C is bounded, there are words w; € A* such that

C={w=w...w|(ng,...,n,) €S} (2.1)

for some subset S of N". We work in terms of this fixed decomposition of C.
We say that w; has bounded exponent if n; is bounded as w ranges over C.
Otherwise w; is said to have unbounded exponent.

Lemma 2.1  Without loss of generality, the combing C may be assumed to
have the following additional properties:

1. the exponent lo which cach w; appears in any word of C is less than the
order of w; n (I}
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2. if w; and w; are both of unbounded exponent, and if some positive powers
of w; and W; are conjugate in G, then w; = w;.

Proof. We suppose that C has been chosen so that the number of distinct
words w; of unbounded exponent is minimal amongst all combings of G which
are bounded languages and satisfy the asynchronous fellow traveller prop-
erty. We emphasize that we have chosen our meaning carefully here; we
have minimized the cardinality of the subset of {w;} consisting of words with
unbounded exponent without counting multiplicities to account for the case
where w; = w; for some 7 # j.

Suppose that @; has order m. If m = 1, we delete occurrences of w; so as
to decrease the integer r in the definition of C. Otherwise, for each w € C,
we replace the subword w! by w! where n; = mp + ¢ with 0 < ¢ < m. The
image of w in G is not changed by this procedure, so C, thus modified, is still
a combing; and the number of distinct words of unbounded exponent has not
increased. Moreover, by repeated application of Lemma 1.2 (1) , we have
that Dy(zwy, zwly) < D,(w™,€), and hence, by the triangle inequality for
D,, we see that C is still asynchronously bounded after being modified as
above.

For (2) suppose for 0 < m < n and for some z € A*, zwlz™! and w}
have the same image in G. If w; # w;, then in every word w € C we replace
w;’ by zw;"*z7 w}, where n; = np + ¢, with 0 < ¢ < n. With these changes
C is transformed into a combing C’ which is still a bounded language. It
again follows from Lemma 1.2 that C’ is asynchronously bounded. We deduce
that w; = wj, for otherwise C’' would have fewer subwords w; of unbounded
exponent than C, contradicting the minimality of C.

Suppose that C has been chosen so as to satisfy the conclusions of Lemma,
2.1. For each integer ¢ with 1 < ¢ < r we add a new generator a; and its
formal inverse to A, and define @; = w;. We then redefine C by replacing
each of the words w; in its definition by the corresponding new generator a;.
(Notice that since the index ¢ was encoded in the definition of a;, we have that
a; # a; even if w; = w;.) It follows from Lemma 1.2 and the fact that any
two word metrics on G are Lipschitz equivalent that C, redefined in this way,
still satisfies the asynchronous fellow traveller property. The introduction of
the new generators a; allows us to refine Lemma 2.1:

Lemma 2.2  Without loss of generality, the combing C may be assumed to
have the following properties:

1.C = {w = a...al |(ny,...n,) € S} for some subset S of N" and
distinct generators a; € A.

2. Ifw = af'...a™ € C, then n; is less than the order of @; in G; in
1 T )
particular if a; is of unbounded exponent, then @ has infinite order.
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3. If a; and a; have unbounded exponent and some positive powers of their
images are conjugate in G, then a; = a;.

Next we consider the restrictions which the asynchronous fellow traveller
property places on bounded languages. We consider the situation D,(w,v) <
I described by conditions (1.2), and maintain the notation established there.
In (1.2) we allowed the possibility that for some ¢ we have both z; = z;,; and
yi = yit1. But clearly this possibility can be avoided simply by deleting all
such pairs and reindexing. Likewise the simultaneous inequalities z; # z;y1
and y; # yiy1 may be avoided by interpolating an extra copy of z; before z;,,
and an extra copy of y;;1 after y;. One must also increase the constant K by
I. With these changes we have (with the notations of (1.2)): for all z,

Either z; = z;4; and y; # yiy1, or vice versa. (2.2)

I'rom now on we assume that the choices of prefixes expressing the condition
D.(w,v) < K for words w,v € C with D(w,v) = 1, satisfy condition (2.2). It
is also convenient to introduce the following notation: Given 0 <1 < j < N
define z;; € A* by z;z;; = x;, and define y;; likewise. Thus, given any
partition 0 < ¢y <4y < -+ <4, = N we have w = z9;, 4,5, ... Zi,_, N- Also,
rom (2.2) we have

izl + lyigl =5 —i. (2.3)

In particular N = |w| + |v].

LLemma 2.3  Suppose that G satisfies the hypotheses of Theorem A, suppose
that C has been chosen as in Lemma 2.2, and suppose that Theorem A (2)
docs not hold. Then, there is a constant M such that for all w,v € C with
d(,7) <1, the prefizes of w and v described above satisfy | |z;| — |yi| | < M.

I'roof. We assume that the prefixes z; for w, and y; for v, are as in the
preceding discussion. Because w can be written as in Lemnma 2.2(1), we may
write W = o4, Tiy iy - - - Tiy_y iry Where each z;,_, ;. is either a positive power of
«, or the empty word. We refine this decomposition a little: Each y;,_, ;, is
a product of powers of a; to @, in order, and we decompose it as such, then
refine the above decomposition of w so as to make the comparison of prefixes
nolationally simple. Thus we factor w and v into products of powers of the
pencrators ay.

W = T0,k1 Thykz - - - Tho_y k2 V= Yo,k Ykioks - - - Yk o k2 (24)

Define A(2) := ||zi| — |yi||. Clearly A(0) = 0, and by (2.2) A(z +1) <
() + 1. To complete the proof of the lemma it suffices to show that there
15 a constant M’ such that if v, and y, ; are both powers of generators then
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A(7) < A(2) + M'. Indeed, if we exhibit such a constant, then we can set
M=rM.

Assume z;; and y;; are powers of the generators a and b respectively.
Let M; be an upper bound on the exponents of all generators a) of finite
exponent. If @ and b are both of bounded exponent, then it follows from (2.3)
and Lemma 2.2(2) that j — ¢ < 2M;, whence A(j) < A(i) + 2M;. Thus we
may assume that @ has unbounded exponent. Notice also that there is no loss
of generality in assuming that j — ¢ is greater than a convenient constant. In
the next stage of the proof we show that when j — 7 is large neither @ nor b
can be of finite order.

For ¢ < k < j define g; := 75 'Tx. As d(1,g;) = d(U,Zx) < K, there are
only a finite number of possibilities, say Mj, for g;. Suppose b is of finite
exponent; then |y; ;| < My. If j — ¢ is large enough (j — ¢ > M; M, suffices),
then for some k, k' with: < k < k' <jand k'—k > Mo, yx = Ypy1 = ... = yp.
By choice of Ma, gk, = g, for some k1, k; with £ < by < ky < ¥’ whence
some power of @ is conjugate to the identity in G. But this is impossible, by
Lemma 2.2 (2) , because we are assuming that a is of unbounded exponent.

It remains to consider the case where both @ and b have infinite order. We
may assume j —¢ > M,. Consequently, for some k, &' with: < k < ¥ < j, we
have gx = gp. Consider any such &, k’. The images in G of z and yx are
conjugate. In other words @ raised to the power |z 4| is conjugate to b raised
to the power |y |. Since k < k', condition (2.2) implies that at least one
of these powers is nontrivial, and since neither @ nor b is trivial, this implies
that the other power is also nontrivial, hence we may apply Lemma 2.2(3)

to deduce that @ = b. We are assuming that Theorem A (2) does not hold, -
so we conclude that |zx x| = |ykw| whenever gr = gir. Hence A(k) = A(K). !

Thus the number of different values of A(k) for ¢ < k < j is at most M,.

Condition (2.2) ensures that A(k) assumes every value between A(7) and

A(j) as k ranges from ¢ to j, consequently A(j) < A(d) + M.

A well known and very beautiful result of Gromov [6] states that a group '

with polynomial growth is virtually nilpotent. In light of Gromov’s theorem,
the following lemma completes the reduction of Theorem A to Theorem C.

Lemma 2.4  Suppose that Theorem A (2) does not hold. Then:
1. C satisfies the synchronous fellow traveller property.
2. There exist constants M and Q such that for all w € C,
lw| £ Md(1,w) + Q.

8. G has polynomial growth.

Proof. Consider w,v € C with d(@,7) = 1 and let the sequences of prefixes
Zg, %1 ... and yo,y1,... be as in the discussion prior 1o Lemma 2.3, 1l w; is

st e
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any prefix of w, then w; = z; for at least one value of ¢. Thus d(wy, %) < K.
By Lemma 2.3, the difference between |wi| = |z;| and |y;| is at most M. It
follows that if vy is the prefix of v with length min{|w,|, |v|}, then d(@7,v7) <
d(w1, %) + d(7i,71) < K+ M. Thus (1) holds.

By Lemma 2.3 we have that | |w| — |[v|| = | |zn| — |lyn]]| < M. K we let Q
denote the length of the word in C representing the identity, then a simple
induction on d(1,®) establishes (2) . Finally, (2) implies that every g € G
with d(1,¢) < m is represented in C by a word of length at most Mm + Q.
By Lemma 2.2 (1) each such word is determined by an r-tuple (ny...n,) of
integers each between 0 and Mm + Q. Thus there are at most (Mm+Q +1)"
such words.

3. The proof of Theorem C

Let G be a finitely generated virtually nilpotent group and let C be a comb-
ing of G by a bounded language. Suppose that C satisfies the asynchronous
[cllow traveller property and the conditions of Lemma 2.3. We claim that
Theorem A (2) does not hold in G, so in particular we may apply Lemma
2.4. In order to see that this is the case, we consider a nilpotent subgroup H
of finite index in G and suppose g € G is of infinite order with ¢™ conjugate
to g™ for some m,n with 0 < m < n. Since the finitely many conjugates of H
intersect in a normal subgroup of finite index, there is an integer p such that
all p-th powers lie in H. If g, conjugates g™ to g", then g} conjugates g™
to g?". Consequently, it suffices to show that Theorem A (2) cannot hold
il (7 1s nilpotent. Clearly G cannot be abelian. More generally, the subgroup
penerated by g™ must intersect Z(G), the center of G, trivially whence the
image of g in G/Z(G) is of infinite order and we are done by induction on
Lhe nilpotency class of G.

At its core, our proof of Theorem C depends upon the geometry of conju-
gation in nilpotent groups. However, this geometry is somewhat obscured by
the surrounding technicalities, so to clarify our exposition we concentrate on
i cage of particular interest, the 3-dimensional integral Heisenberg group:

Hz = (-’B,y;z | [x,y] = 37[$7z] = [y,z] = 1)'

Aller completing the proof in this case we shall see that the extension to ar-
hitrary virtually nilpotent groups requires only a few observations about the
slructure of the proof in the 3-dimensional case, together with some elemen-
Lary facts about nilpotent groups, in particular the structure of centralizers
ol elements in the penultimate term of the upper central series.

Itemark.  The import of Theorem C to 3-manifold topology is essentially
contained in the case G = Ha, because any group G which acts properly and



10 Bounded languages and geometry of groups

cocompactly by isometries on the 3-dimensional geometry Nil contains Hj
as a subgroup of finite index (see [9]).

The Case G = Hz. Let A — G be a choice of generators for G and let
C C A* be a combing which satisfies Lemma 2.2 (1) - (3) and Lemma 2.4
(1) - (2) . In particular there is a constant K such that for all w,v € C with
d(w, ) = 1, the synchronous distance between the paths w and v is at most
K. In other words, if w, is any prefix of w and v, is the prefix of v of length
min{|w |, |v|}, then d(wr,v1) < K.

Because C is a bounded language, Lemma 1.3 allows us to write it as the
union of finitely many sublanguages C; of the form:

Ci = {w = uiobliuin - 5wy | (1, -+, n,) € Si}

where r = (i) € N, b;; € A, and u;; € A*. (Each b;; is one of the a;’s of
Lemma 2.2 (1) .) The set S; is empty if r(:) = 0 and otherwise S; C N” has
the property that there exist r-tuples in S; whose smallest entry is arbitrarily
large. Given w € C; we define

{(w) = min{n;}.

In what follows, when referring to w € C; we shall assume that it is decom-
posed as in the above definition of C;.

We wish to use Euclidean geometry as a tool to analyze the geometry of
the language C. In order to do so, we consider G = G/Z(G), the quotient
of G = 'Hj by its center. G is isomorphic to Z2 and so may be identified
with the integer lattice of the Euclidean plane E2. Let 7 : G — G be the
projection. Define § = 7(g) and @& = 7(w); § and @ are vectors in E*. In-
particular A = {@|a € A} spans E?. The integral translates of vectors in A
form the edges of a realization of the Cayley graph Tof @ corresponding to :
the choice of generators A-G induced by the choice of generators A — G.

Let d be the word metric in G corresponding to the choice of generators |
A. Clearly d(g1,g2) > d(g1,5), and it is straightforward to see that the ball.,
of radius n around 1 in G projects onto the ball of radius n around 1=0i in i
G. Notice that if || || denotes the usual Euclidean norm on EZ, then there is ;
a constant A > 1 such that ;

i~ 3l < d(@,3) < Mgt~ @l %
1
The path in the Cayley graph I' of G determined by w € A” pmJectsg
to a polygonal path P(w) in T. If £(w) is large, then qualitatively (to the ‘;
distant observer) P(w) looks like a concatentation of at most r(z) long line |
segments corresponding to the b;;’s with 1:; nontrivial. Of course, upon :
closer examination one would see that these long segments of P(w) were in
fact interspersed with short line segments, translates of the @;j.
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l'or each C; we consider the sequence of vectors E,\l, e ,b,-’,,?;), and pick C;
o that the number of subsequences 5,-;, N l;:; with 0 # E;; # f;;: # 0 and
ull intervening vectors 0 is maximal. For convenience we assume that this
sublanguage is Cp. For the remainder of this section s will denote the largest
integer such that by, # 0.

Given v = u; b juin - bl uir € Ci, for each § with b;; # 0 we let
— . PRSI L P .. )
g = uiobijuin - - vij1andfi; = wiobiiuin - uijab;  (3.)

respectively, and denote by £; ;(v) the infinite line in E? through the points
wv,; and [7,; The L; ;(v)’s are the lines determined by the long line segments
mentioned above. The following proposition shows that for any given distance
dy, and for each w € Cy with (w) sufficiently large, if v € C; satisfies d(w,7) <
dy, then Lo (w) = £; j:(v) for some j'.

Proposition 8.1 Let C and Cy be as above. There exists a constant B > 2
and an unbounded function ¢ : N — N such that for all w € Cy and v € C;, if
d(w,v) < p(f(w)), then for some j'

. Los(w) = Lij(v);
2. the distance in E? from % to Los(w) is at most B;

3. the distance in E? from © to L; ;(v) is at most B.

The following consequence of Proposition 3.1 completes the proof of The-
orem C in the case G = Hs.

Corollary 3.2 H3 does not admit a combing C as in Proposition 3.1.

P’roof. We shall argue by contradiction. Pick w € Co with ¢(¢(w)) > 2AB
and let £ = Lo 4(w). Clearly there is v € C with ¥ a distance greater than B
from £ and ||&—3| < 2B. We choose v so that d(,w) = d(®,5) < A||&—d].
By Proposition 3.1, the distance from ¥ to £ is at most B.

I’roof of Proposition 8.1.  The following proof is an elaboration of an ar-
suument of Epstein et al. ([5], 8.2.10). Recall that the combing C C A* is
assumed to satisfy Lemma 2.2 (1) - (3) and Lemma 2.4 (1) - (2) . In par-
licular there is a constant K such that for all w,v € C with d(w,7) < 1, the
synchronous distance between the paths w and v is at most K.

Iix w € Co and v € C; with d(w,7) < M. We will show that if £(w) is large
enough, then all the conclusions of Proposition 3.1 hold. Let £ = Lo s(w).
Since b:, =0 for all j = s, decomposing w as in (3.1) yields ||,§0,s - <
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Ad(Bo,s, @) < Ad(Bo ,,®) = d(1,%g) + - -+ + d(1,Ugre). Thus the definition
B =243, ; |ui ;| will suffice for Proposition 3.1 (2) .

The condition d(w,7) < M implies (via the triangle inequality for D,) that
the synchronous distance between w and v is at most K M. In other words,
if w, is any prefix of w and v, is the prefix of v of length min{|w:|, |v|}, then
d(w1,v1) < KM. Let v4(n) be the number of elements of G which can be
expressed as words of length at most n in the generators, and assume

{w) > 4y(KM) + B (3.2)

where B is as above. For each j with 0 < j < r(0) and by, # 0 we let
T = ao;, where ap; is a prefix of w described in the notation of (3.1). Let
b = bo,; (again, in the notation of (3.1)). Consider the prefixes z,zb,- - -, zb™
of w. By (3.2), n; > 2y(KM) + B. Let 2,21, -, 2y; be the corresponding
prefixes of v with z; of length min{|zb*|, |v|}. Of course, if one z; equals v,
then all of the subsequent ones do too.

Suppose that the last y(K M) prefixes z; are all equal to z,;. Then, the
distance in G from z,, to zb* is at most KM for n; — (KM) <k<n; It
follows that for two distinct values of k the word differences z5 1gbk represent
the same element of G; whence some positive power of b is conjugate in G
to the identity, contrary to Lemma 2.2 (2) . Hence we may assume that
|zb¥| = 2| for 0 < k < 3y(KM) + B.

From the structure of C; and the conclusion of the preceding paragraph it
follows that for all k in some subinterval of [0,7(K M) + B] with length at
least y(K M), the corresponding sequence of prefixes of v is

QG 5ty a,-,j:b;,j:, Ot,,J/b'] . Q; gt b;ngM) (33)
for some j'. By the argument of the preceding paragraph, two distinct word
differences in this subinterval must represent the same group element, and
we conclude that some positive power of b is conjugate in G to a positive
power of b; . In geometric terms, this means that there are segments of
the lines Lo j(w) and £; j(v) which form opposite sides of a parallelogram in
E?. The other sides of the parallelogram are translates of the image in E?
of the conjugating element. By Lemma 2.2, b = b; ;;; and consequently the
conjugating element centralizes b. As b € G — Z(G), the centralizer of b is an
abelian subgroup of rank 2 containing b and Z (G). It follows that the image
in E? of the conjugating element is parallel to b. Thus the parallelogram
described above is degenerate, and we conclude that Lo G(w) = L;(v).

For each subword by’ in w with bo.; i # 0 we have found a corresponding
subword b; ’;, in v with bo; = b, j» and Lo (w) = L; j»(v). Furthermore, the
order in which the corresponding subwords occur in their respective ambient
words is the same. It follows that C; also satisfies the maximality condition
on subsequences governing the ch01ce of Cp. In partlcular if j' is now fixed

so that by’ corresponds to b’ J,, then for all j > j, b,' equals 0 or b,]
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Il follows in a straightforward way that Proposition 3.1 (3) holds. As we
know Lo ,(w) = L; jo(v), all the conclusions of Proposition 3.1 hold under the
assumption (3.2). But « is strictly increasing, so £(w) = 4y(K M)+ B admits
o sbrictly increasing solution M = ¢(4(w)).

We shall now point out the adjustments which one must make to the pre-
«eding arguments in order to prove Theorem C in the general case. (For the
necessary properties of nilpotent groups we refer the reader to [2].) First of
all we must reduce from the case of virtually nilpotent groups to the case of
nilpotent groups. This is a straightforward matter. Indeed there are standard
techniques (see [5] or [3], Thm. 2.16) for showing that subgroups of finite index
(or, more generally, quasiconvex subgroups) inherit combings from the ambi-
ent. group, and these induced combings inherit the geometric and linguisitic
<haracteristics of the combing of the ambient group. Similar but easier argu-
mments apply to quotients of a given group by a finite normal subgroup. Such
clementary arguments yield:

l.emma 3.3 If ¢ finitely generated group G admits a combing by a bounded
language which satisfies the asynchronous fellow traveller property, then so
too does every subgroup of finite index in G and every quotient of G by a
finile normal subgroup.

Consequently, it suffices to prove Theorem C in the case where G is torsion-
free and nilpotent. In this setting we wish to imitate the preceding proof of
the case G = Hz. In this scheme the following lemma yields a projection
which assumes the role previously played by the quotient map of Hz by its
ventre.

l.emma 3.4 If G is a non-abelian, finitely generated, torsion-free, nilpotent
qroup, then there exists an integer n > 2 and a projection @ : G —» Z™ such
that the image under w of the centralizer of every g € G — kerw has rank at
mostn — 1.

Proof.  Let 1,Z,...,Z, = G be the ascending central series of G (recall
that g is in Z; if and only if it is central modulo Z;_;). Each quotient G/Z;
i lorsion free; and for each g € G the centralizer C(g) is closed under taking
roots. Thus G/Z,_, is abelian,; if it were cyclic, then G/Z,_, would be abelian
loo, and hence Z,_; = Z., would follow. But then G would be abelian, which
1 not the case. Thus G/Z._; is free abelian of rank n > 2.

Take 7 to be the projection 7 : G - G/Z,_,. It remains to check that the
image under 7 of C(g) has rank at most n — 1 if ¢ € G — Z,._,. Without loss
ol generality we may pass to the quotient G/Z._,. In other words we may
assume Z._9 = 1 and 7., = Z(G), the center of G. It follows that C(g)
is a normal subgroup of ¢/ containing Z{(7). Because centralizers are closed
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under taking roots, G/C(g) is free abelian. Since g ¢ Z(g), we deduce that
G/C(g9) = (G/Z(G))/(C(9)/Z(Q)) has rank at least 1. O

Henceforth we assume that G is a non-abelian torsion-free nilpotent group.
Let Cg(g) denote the centralizer of g in G. We continue our previous conven-
tion of viewing Z" as the rectangular lattice in E* and 7 as a map into E*. As
before we write @ in place of 7(w) if w € A*; and also as before the word met-
ricon G is related to the Euclidean norm by (1/A\)|[§—5|| < d(g, k) < A|G—A[.
We assume that the combing C and the sublanguages C; are as described prior
to Proposition 3.1. In particular we assume that Co is as chosen there, and
we keep the notations of (3.2).

If one attempts to generalize Proposition 3.1 to the present situation in
the most naive way then one immediately encounters difficulties stemming
from the fact that the image under = of Cg(g), where g € T' — ker 7, is not
necessarily cyclic. Isolating this difficulty leads one to focus on the correct
generalization of Proposition 3.1; instead of working with the lines £; ;(v) we
consider their following higher dimensional analogues:

Given b;; with b;; # 0, we let A;;(v) denote the affine subspace of E"
obtained by translating to @;; the subspace spanned by 7(Cg(b ;).

The argument of Corollary 3.2 reduces Theorem C to the following analogue
of Proposition 3.1.

Proposition 3.5 Let G be a finitely generated, non-abelian, torsion-free,
nilpotent group, and let C and Cy be as above. Then, there exists a constant
B > 2 and an unbounded function ¢ : N — N such that for all w € Cy and
v € C;, if d(W,7) < p(€(w)), then for some j'

1. Aos(w) = Ayj(v);
2. the distance in E* from @ to Ao s(w) is at most B;

3. the distance in E* from ¥ to A; j(v) is at most B.

Proof.  Modulo replacing each occurence of the symbol £ by A, we can
follow the proof of Proposition 3.1 verbatim, except for the fact that one
does not deduce that the parallelogram discussed following expression (3.3)
is degenerate, but rather one concludes that it is contained in the affine
subspace Agj(w). Thus Agj(w) and A; j(v) intersect non-trivially. But these
are both translates of the same subspace, because b and b; ;» are conjugate
in G, and hence 7(Cg(b)) = 7(Ca(b;;+)). Thus, since they are parallel and
intersect, Agj(w) and A;;(v) must coincide. The proof then proceeds as in
Proposition 3.2.
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Finitely presented groups and the
finite generation of exterior powers

C.J.B. BROOKES!

1 Introduction

1.1 A group [I' is said to be of type (F P).,, where m is a non-negative integer,
if the trivial ZI'-module Z has a ZI'-projective resolution

— P — P—Z—0 M
with P; finitely generated for all ¢ < m. The augmented chain complex of
a K(I',1)-Eilenberg-MacLane space with finite m-skeleton provides such a
resolution and so, for example, finitely presented groups are of type (F P)s; it
is however unknown whether all groups of type (F P), are finitely presented.
If there is such a resolution () with all P; finitely generated then I is of type
(FP),,

In [2] Bieri and Groves showed that for a metabelian group the condition
that it is of type (FP),, implies a constraint on the homology of its com-
mutator subgroup. Their argument [2, Proposition 5.3] applies for groups I
with abelian normal subgroup A and polycyclic quotient G = I'/A. If I is
of type (F'P),, we may use a resolution of the form (}) to calculate the ho-
mology groups H;(A;Z). The resolution may be regarded as a Z A-projective
resolution of the trivial Z A-module and so we wish to study the homology of

oo P QUL — PoQga Z — Z — 0.
By assumption P; is a finitely generated ZI-module for i < m and so we
know the P; ®z4 Z to be finitely generated ZG-modules. The integral group
ring of a polycyclic group is Noetherian (Hall [16]) and so the homology group’
H;(A;Z),being a section of P;®z4 Z, is also finitely generated as a ZG-module,
for 7 < m. The abelian normal subgroup A may be regarded as a ZG-module
via conjugation and its i-th exterior power A’ A over Z inherits a ZG-module;
structure as follows. By definition A’ A is the i-th homogeneous component’
of the exterior algebra obtained by taking the quotient of the tensor algebra
T(A) over Z by the 2-sided ideal I generated by the elements a ® a with a in;
A. The diagonal G-action on T(A) leaves I invariant and induces an action!
on each \' A. Proposition 5.1 of [2] says that for each integer i > 0 there§
is a natural embedding of A’ A in H; (A;Z). Thus we deduce that N Ais a;
finitely generated ZG-module for ¢ < m when I’ is of type (F P)y,. i

The work of Bieri and Groves was concerned with metabelian groups and so
with modules over the integral group ring of finitely generated abelian groups-
Q. For x €Hom(Q, R) define Q, to be the monoid {q € @ : x(¢) >0}. Then
they define, for a ZQ)-module M, the subset Ly of Hom(Q, R) given by

1The author is an Alexander von Humboldt Fellow
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Yy = {x: M is finitely generated over ZQ), }

and say that M is m-tame if whenever x1,...,xm € Hom(Q,R) with

\i +Xz..-+ Xm = 0, then at least one of the homomorphisms yx; lies in 4.
It was conjectured in [2] that an extension I' of A by G with both A and
(! abelian, is of type (FP),, if and only if A is m-tame as a ZG-module.
'I'his was established for m = 2 by Bieri and Strebel [6] and for general m by
Aberg in the case where A is of finite Priifer rank [1]. Recently Noskov [19]
lus shown in the case where A is torsion-free and the extension splits that A
w m-tame if I is of type (F P),y,.

A special case of Theorem C of [2] is that a ZQ)-module M of prime ex-
ponent p is m-tame if and only if all its exterior powers A’ M for ¢ < m are
finitely generated. However in general, when M is not of finite exponent, the
+xlerior powers and the homological approach described above do not tell the
lull story. For example if @ is infinite cyclic generated by ¢ and M = ZQ/I
where I is the ideal generated by 2¢ — 3, the module is Z-torsion-free of rank
| and so its exterior i-th powers are zero for ¢ > 2. However M is not 2-tame
nudl all extensions I" are known to be not of type (FP),. The main difficulties
~eem to arise in such finite rank examples, an area studied by Brewster in his
(hesis [8] when looking at the maximum condition on 2-sided ideals in inte-
pral group rings. The consideration of exterior powers is however sufficient
lo say that metabelian groups of type (F P)o have a subgroup of finite index
ol finite cohomological dimension [2, Theorem A]. Recently Kropholler has
shown this to be true for all soluble groups of type (FP)s, [17] and that they
are constructible [18].

1.2 The point of this paper is to describe how the consideration of exterior
powers is also good enough to see that even the (FP), and (FP)3 conditions
on I’ impose very strong constraints when G is non-abelian.

Recent work of Brookes and Groves [13] and Brookes, Roseblade and Wilson
[11] shows that it is impossible for many polycyclic groups to act faithfully
on a module of prime exponent with finitely generated exterior square. The
ensuing result is the following.

Theorem A [13,14] Let I" be an abelian-by-polycyclic group of type (FP),
with Fitting subgroup F. If I'[F is virtually a d-generator group then it is
mriually nilpotent of virtual class at most d.

‘I'he main original content of the paper concerns the (F'P)3 condition; its
imposition ensures that the virtual class of I'/ F is bounded, independent of
the number of generators.

Theorem B Let I' be an abelian-by-polycyclic group of type (FP)s with
I"iting subgroup F. Then '/ F is virtually nilpotent of virtual class 2.

I is unknown whether such a result also holds in the (F P), case. As yet all
examples of extensions 1" of type (1), have I'/ I virtually of class at most, 2;
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there are two examples of Robinson and Strebel [21] with I'/F of class 2, and
it is not clear whether Strebel’s more general (unpublished) recipe [26] for
finitely generated abelian-by-nilpotent groups includes examples with I'/ F' of
greater virtual class. In §3.2 it is shown that neither example of Robinson
and Strebel is of type (FP)s.

2 Krull Dimension

2.1 There are several notions of dimension from Noetherian ring theory
available for use in the study of modules over polycyclic groups. They all
have disadvantages as well as advantages. The best choice when the group is
virtually nilpotent is that of Krull dimension as it behaves well under taking
exterior powers, taking submodules over subgroups, and under induction.
However the latter two virtues disappear for a general polycyclic group and
we have to rely in §4 on an ad hoc approach estimating rates of growth.

Let R be a ring. The Krull dimension, dim M, of an R-module M is
defined inductively as follows: dimM = ~1 if and only if M = 0, and for
¢ > 0,dimM < q if and only if in every descending series of submodules in
M, all but finitely many of the factors have dimension at most ¢ — 1. Thus
dim M = q if and only if dimM < ¢ and dim M £ ¢ — 1. If there is no finite
g with dim M = ¢ we set dim M = oo but in fact in our context all finitely
generated modules have finite dimension.

The concept was introduced by Rentschler and Gabriél in [20]. The genera.l
properties we shall need are the following.

(1) for M; < M, dim M = max{dim M, dim M/M, }

(2) for a finitely generated R-module M, dimM < dim R

(3) any Noetherian R-module of dimension ¢ has an image like-
wise of dimension ¢ which is eritical, that is, the image is a module
all of whose proper quotients are of smaller dimension

(4) non-zero endomorphisms of critical modules are monomor-
phisms.

For group rings of abelian groups this definition coincides with the usual
one for commutative rings. For example if @) is free abelian of finite rank h(Q);
and P is a primeideal of ZQ) then dim ZQ/ P is the maximal length r of a chain|
of prime ideals P = Py < P, ... < P, of ZQ. In particular dimF,Q = A(Q),]
where F, denotes the field of p elements, and dimZQ = 1+ ~(Q). A theorem!
of Smlth [25] says that

(5) for any polycyclic group H, dimF,H = h(H) and dimZH =
1+ h(H), where h(H) denotes the Hirsch length of H.

Segal investigated the additional properties of integral group rings of finitely
generated nilpotent groups H, the following being the most important.
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(6) Let L < H and V be a ZL-submodule of a ZH-module M.
Then dim;, V < dimyg M.

(7) Suppose L <4 H with H/L infinite cyclic and V is a critical
Z L-module. Then V ®z;, Z H is a critical Z H-module of dimension
i1+dimy V.

Lemma 1 Let H be any group and My and M, be non-zero F, H-modules
of finite Krull dimension. Then dim M; @ M, > dim My + dim M;.

I'roof. This is a simpleinduction on dim M; + dim M,. If M, and M, are both
Arlinian, or in other words dim M; = 0 = dim M; then M; ® M, is non-zero
and so dim M; ® M, > 0. Assume without loss of generality that dim M; > 0.
‘I'hen there is a descending chain My = Mo > Mj; > ... with infinitely
many factors of dimension dim M; — 1. Using the inductive hypothesis and
the fact that — @ M3 is exact for F,-vector spaces, there are infinitely many
inctors of the chain My ® My > My ® My > ... of dimension at least
(llilll M1 bt 1) + dimMg Thus dili ®M2 2 (dili - 1) + dimM2 + 1.

Lemma2  Let H be a group and M be a F, H-module of finite Krull dimen-
nion. Suppose ' M is non-zero. Then dimA' M > idim M

I'roof. This is an inductive argument on ¢; the case ¢ = 1 is trivial. Suppose
Al has a submodule M; with dim M; > 0. Then the image X of M @ M; ®
M) ) ... ® My under the natural map ® M — A* M contains the image Y
ol M@ My ® My @ ... ® My. Here Y is isomorphic to A’ M; and X/Y to
(M/My) ® A= My. Thus

dim(AF M/ A My) > dim(X/Y) > dim(M/M,) + (i — 1) dim M,

wiing the inductive hypothesis and Lemma 1.

Suppose dimM > 0 and we have a descending chain of submodules
M > M, > ... with infinitely many factors of dimension dimM — 1. It
lollows that dim M; = dim M > 0 for all j. By the preceding paragraph the
dencending chain A' M > AP My > ... has infinitely many factors of dimension
al least (dimM — 1) + (i — 1)dim M, and so A’ M has dimension at least
r dimM.

2.2 These estimates are also true for tensor products and exterior powers
ol All-modules over any coeflicient field k. However the story is more com-
plicated for modules over integral group rings, but Segal’s results allow us to
dednee something for general modules with finitely generated exterior powers
o 11 is virtually nilpotent.

bemma3d Let H bea polycyclic group and M be a finitely generated Z H -
module with N' M finilely generaled for some 1.
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(:) If M is of finite exponent then i - dimM < h(H)
(ir) If H is virtually nilpotent then i(dim M — 1) < h(H)

Proof. In either case since M is Noetherian it has a critical image N of
dimension dimM. By (4), since multiplication by an integer induces an
endomorphism of N, we know N to be either Z-torsion-free or of prime ex-
ponent p. In case (i) N must be an F, H-module and, since A\’ N is an image
of A' M, we deduce from (1), (2) and Lemma 2 that i - dim M < h(H).
In case (i¢) either N is again an F, H-module and we can deduce the same
inequality, or we invoke Lemma 8 and Theorem F of Segal [24] to see that
dim(N/Np) = dim M — 1 for some prime p. Case (i) now applies to deduce
that ¢ - dim(IN/Np) < h(H) and we are done.

Combining with the homological arguments and using the notation of §1
we get

Proposition 4 (:) Suppose I' is of type (F P)n, and A is of finite exponent.’
Then m - dim A < h(G).
(ii) Suppose I is of type (FP),, and G is virtually nilpotent. Then

m(dim A —- 1) < h(G). j

Finitely presented groups are necessarily of type (FP); and so the case!
m = 2 applies. More generally using Wilson’s Golod-Shafarevic-type theorem!
[27], Groves and Wilson [15] established these (m = 2) inequalities for all
abelian-by-nilpotent I' which are quotients of finitely presented groups I,
with Iy having no infinite torsion images. For example these inequalities
hold for all abelian-by-nilpotent images of finitely presented soluble groups. |

3 Impervious modules over nilpotent groups

3.1 The next stage is to study for nilpotent groups the structure of modules;
with finitely generated exterior powers. This will, in combination with Segal’s
results, then provide lower bounds for the dimension of such modules. Thej
starting point is to consider impervious modules, that is those modules with
no non-zero submodules induced from a module over a subgroup of infinite
index.

Lemma 5 Let H be a finitely generated nilpotent group and M be a non-
zero ZH-module, which is either Z-torsion-free or of prime exponent, and
with A\' M finitely generated for some 1 > 2. Then M is impervious.

Proof. Suppose M contains a submodule M; of the form V ®z; ZH for some
L of infinite index in H. We may assume that L is normal with H/L infinite |
cyclic, since any subgroup of infinite index is contained in such an L. Choose
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h so that H = L(h). Since M is assumed to be either Z-torsion-free or of
prime exponent, the natural map @ M; — ®'M induces an embedding
of A'M;y in A' M and so A' M, inherits finite generation. But for example

A* M is clearly not finitely generated; it contains an infinite direct sum @ W,
>

where W, is the Z H-module image of @ (V ® h') ® (V ® h*) under the
j—k=l

natural map @ My — A? M. A similar argument for larger ¢ also gives a
contradiction.

In fact if an abelian-by-nilpotent group I' is the image of a group I, with
I'. of type (F'P), containing no non-abelian free subgroups then the underly-
ing module A is necessarily impervious; as observed in [15] the argument of
[10, Proposition 2] shows how to deduce this from looking at the metabelian
images of I' and using Theorem C of Bieri, Neumann and Strebel [5] (see in
addition 1.5.7 of the forthcoming book of Bieri and Strebel [7]).

3.2 In this section we consider finitely generated nilpotent groups H with
mfinite cyclic commutator subgroup H' such that H/H' is free abelian. The
commutator subgroup is thus central. If centre and commutator subgroup
toincide we have the extraspecial groups H,,

(-"layl)$2ay2,' ey TpyYny 2 0 [wi,yi] =z, [(Bi,Z] =1= [yiaz], (1 S ? S n))

lor example, the discrete Heisenberg group H;.

(iroves and Wilson showed in [15] that an impervious Z H,-module on which
no non-trivial central group elements of H,, act unipotently is of dimension at
least n+1. But A(H,) = 2n+1 and so by Lemma 3(7) such a module, if it has
linite exponent, cannot have finitely generated exterior square. However the
nnderlying module of the first example of Robinson and Strebel [21] shows
that the finite exponent condition cannot be dropped; their second example
nhows that the conditions imposed on H here are not sufficient to rule out the
+xistence of I, H-modules with finitely generated exterior square and with no
non-trivial central group element acting unipotently.

l'or n > 2 we can deduce immediately from Lemma 3(z7) that a ZH,-
module, on which no non-trivial central group element acts unipotently, does
not have a finitely generated exterior cube. In fact this is also true for n = 1;
l.emra 3(7) deals with the finite exponent case as before but we have to try
o little harder at the end of the proof of Lemma 3(i¢) with the Z-torsion-free
critical N. We know, since N/Np has finite exponent and finitely generated
exlerior cube, that some central group element acts unipotently and so H.,
acts finitely on N/Np. Thus H, acts as a group of Hirsch length at most 2n
on N/Np and we see that 3. dim(N/Np) < 2n and hence dim M < 2n/3 + 1
in this case, in contradiction of the lower bound, dim M > n + 1.

It is possible, though not as casy, to rule out the finite generation of exterior
cubes under the more general conditions of this section. In so doing one
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|
sees that neither example of Robinson and Strebel is of type (FP)s. The§
ingredients of the proof are similar to those used for ZH,-modules where
the lower bound stemmed from consideration of a torsion-free abelian normal
subgroup B containing the centre Z of H with h(B/Z) =n and h(H/Z) = 2n.
This exists since the map H x H — H’ given by (g, k) — [g, ] induces an ‘
integral-valued alternating form on H/H'. :

Lemma 6 With H satisfying the hypotheses of this section, let M be a;
finitely generated Z H-module with finitely generated exterior cube. Then some
positive power of the augmentation ideal of some characteristic subgroup ofi
H' of finite index annihilates M. In particular if M is of finite exponent then '
H' acts finitely.

Proof. Suppose not. Since we are looking at Noetherian modules, by passing’
to an image we may assume we have a counterexample M all of whose quo-
tients satisfy the conclusions of the lemma. Clearly we can take the action of:
H on M to be faithful. '

Every non-zero endomorphism of M must be a monomorphism; otherwise
both its cokernel and its image would be isomorphic to proper quotients of.
M and some positive power of the augmentation ideal of some characteristic!
subgroup L of finite index in H’ would kill both, and hence M. Every element
of ZZ, where Z is the centre of H, induces by multiplication an endomorphism’
of M. It follows that the annihilator P of M in ZZ is prime and that M
is ZZ| P-torsion-free. The faithfulness of the action of H implies that
(14+ P)NZ =1. It follows from Lemma 5 that M is impervious.

Now pick a non-zero m in M with X = annggm maximal among such
annihilators. Thus X is a prime ideal of Z B with XNZ Z = P. Clifford theory
(Roseblade [22, Lemma 3]) says that the submodule M; of M generated by
m is of the form m(ZN ®zv ZH), where N is the normaliser of X under
conjugation. Because M is impervious N must have finite index in H and the
centraliser of NV in H is just Z. But (14+X)NB is N-invariant and if non-trivial
would have non-trivial intersection with Z. So (14 X) N B = 1. Roseblade’s
Theorem D of [23], applied directly when Z N X = (p), or to the prime ideal
X ®z QB of QB in the ZN X = 0 case, says that X = PZB. Thus M
contains a copy V of ZB/X = (ZZ/P)Q@zz ZB. A mild variation on Segal’s
Lemma 9 [24] (with an almost identical proof) states there is a maximal ideal
I of ZZ containing P such that V > VI = MINV and thus V/V I is non-zero
and embeds in M/MI. But V/VI = (ZZ/I)®zz ZB. Since Z Z/I is critical,
an induction using property (7) gives dim V/VI = h(B/Z) = n. Also (6) says
dim M/MI > dimV/V1. Since I is maximal it is cofinite, and so H acts on
M/MI as a group of Hirsch length at most h(H/Z) = 2n, and M/MI is of
exponent p for some prime p. Lemma 3(z) applied to M/MI, a module with
finite exterior cube, gives 3.dim M/MI < 2n, a contradiction.

3.3 For general finitely generated nilpotent groups the theorem that yields
lower beunds for the dimension of modules is the following.
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Theorem C [13, Theorem 3.2] Let H be a finitely generated torsion-free
nilpotent group with centre Z and commutator H'. Let M be an impervious
Z H-module which is ZZ[P-torsion-free for some prime ideal P of ZZ with
(1+P)NZ =1. Let Hy be a normal subgroup of H containing H'Z and with
Ho/H'Z finite-by-cyclic. Then M is Z Hy/ P.Z Ho-torsion-free.

The proof of this uses Clifford theory much as in the proof of Lemma 6.
However due to the non-commutativity of the situation we have to consider
the theory of indecomposable injective modules developed by Brookes and
Brown [10, 11, 12]. This means that we require information about the sta-
hilisers of isomorphism classes of indecomposable injectives rather that about
normalisers of prime ideals. One way of proving the result of Roseblade
|23,Theorem D] used in the lemma is to make use of the geometry of the
subset Xzq/p of Hom(Q,R) defined in §1.1 for a prime ideal P of the integral
group ring of a free abelian group @ of finite rank. Bieri and Groves [3] showed
that the union of the origin and the complement of ¥zp/p in Hom(Q,R) is
a closed rationally defined polyhedron (see also [4]). The action on @ of
the normaliser N of the prime ideal induces an action on Hom(Q, R) under
which Yzq/p is invariant. In the proof of Theorem C a crucial step is to
define an analogous geometric set of Hom(Q@,R), but this time for a module
over a crossed product of a division ring by a free abelian group ). Unlike
the group ring, in general such a crossed product is non-commutative and we
have only been able to prove a weaker result about the geometric structure
of the set. There remain several open questions.

For a module M as in Theorem C we know we have a copy of ZHy/P.Z H,
cmbedded as a Z Hy-submodule and this submodule is induced from the crit-
ical ZZ-module ZZ/P. Property (6), of Section 2, gives

and property (7), applied h(Ho/Z) times, gives

But the faithfulness of P ensures dimZZ/P > 1 and using a choice of Hy
with h(Ho/H'Z) =1 we get

Corollary C [13, Corollary 2] With H and M as in the theorem, suppose
IT is non-abelian. Then dimM > h(H'Z) — h(Z) + 2.

Instead of using the corollary to give a lower bound on dimension one can
apply Theorem C directly to produce the following.

Theorem D [13, Theorem 3.4] Let I' be an abelian-by-nilpotent group
of lype (FP)y with I'illing subgroup F. Suppose that I'/F is virtually a d-
generalor group, Then D'/ 1 is virtually of class at most d.
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The corresponding module result has a similar proof.

Proposition 7 Let H be a virtually d-generator nilpotent group and M be
a finitely generated Z H-module. Suppose that N> M is also finitely generated.
Then there is a normal subgroup K of H with H/K virtually of class d so
that some positive power of the augmentation ideal of K annihilates M.

3.4 Theorem C can also be used to prove the following module result which
has the abelian-by-nilpotent case of Theorem B, stated in the introduction, as
an immediate corollary. The idea of the proof is to reduce a counterexample
to one where Theorem C applies and then to observe that this counterexample
would have an image ruled out by Lemma 6.

Proposition 8 Let H be a finitely generated nilpotent group and M be a
finitely generated Z H-module. Suppose that N> M is also finitely generated.
Then there is a normal subgroup K of H with H{K wvirtually of class 2 so
that some positive power of the augmentation ideal of K annthilates M.

Proof. By passing to a subgroup of finite index we may assume that both
H and H/H' are torsion-free.

Suppose the proposition is false. As in Lemma 6 we may consider a coun-
terexample M with faithful action, all of whose proper quotients obey the
conclusions of the proposition, and conclude that M is impervious and ZZ/ P-
torsion-free for some prime ideal P of ZZ with (1+ P)NZ =1.

We now apply Theorem C to find that M is in fact Z(H'Z)/P.Z(H'Z)-
torsion-free. Because M is a counterexample, H itself cannot be virtually of
class 2 and so H'/C is infinite where C = H' N Z. Indeed there is a normal
subgroup L of H with C < L < H' and H'/L infinite cyclic. Note that H/L
is the sort of group considered in §3.2.

M contains a copy U of ZH'/X.ZH' where X = PNZC. Thus U is of the
form V Qzr, ZH' where V = ZL/X.ZL. Observe in fact that M is ZL/X.ZL-
torsion-free. We can find an H-invariant ideal I of ZL, with ZL/I finite,
such that U > U N MI = UI and hence U/UI is non-zero and embeds in
M/MI. To do this we need a result similar to that used in Lemma 6; it is a
halfway house between Lemma 9 of {24] and Lemma 14 of Brookes [9]. Using
Theorem C* of Roseblade [22] (see also Lemma 13 of [9]) there is a finite class
S={ZL/A,, ZL/A,, ..., ZL/A:} of cyclic ZL-modules, with A, = X ZL
and A; > X.ZL for 1 < < t,such that M/U is the union of an ascending
series of ZL-submodules with each factor H-conjugate to some member of
S. Set A = A, N...N A;. The argument of Lemma 14 of [9] shows that, in
the terminology of [9], if an ideal I of ZL, H-invariant under conjugation,
culls A/X.ZLin ZL/X.ZL then UNMI =UI < U. Since ZC/X is uniform
and H-ideal critical, Proposition 1 of [9] (with I' = H) and induction on a
normal series

C=Ly< I1<...< Ly=L
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with infinite cyclic factors show that ZL/X.ZL = (ZC/X) Qzc ZL is also
uniform and H-ideal critical. But A > X.ZL and so there is such a culling
ideal I. (In fact the minimality of M as a counterexample implies that M is
of prime exponent and L is abelian. For the latter one shows that H/C is
virtually of class 2; but it is also torsion-free and hence itself of class 2, and
so H' is abelian.)

Now, because ZL/I is finite, some characteristic subgroup of finite index
in L acts trivially on M/M1I. So there is some subgroup of finite index in H
which acts on M/M1I as a group of the sort considered in §3.2. Moreover,
hecause M/MI contains U/UI = V/VI Qg ZH', the action of H' on M/M1I
is not finite. This contradicts Lemma 6 and the proposition is proved.

4 Modules over polycyclic groups

4.1 The main module result of Brookes, Roseblade and Wilson [14] is the
following.

Theorem E [14] Let H be a polycyclic group and M be a finitely generated
7.H-module with \' M finitely generated for some i > 2. Then there is a
normal subgroup K of H with H/ K virtually nilpotent such that some positive
power of the augmentation ideal of K annihilates M.

In the proof the key special case is when H contains a normal free abelian
subgroup B with H/B also free abelian, and M is an F, H-module which is
I, B-torsion-free.

Suppose ¢ = 2 and instead of the exterior square consider for a moment
(he tensor square N = ®* M. It is a F,(H x H)-module which is F,(B x B)-
lorsion-free. Suppose it is finitely generated under the diagonal action of H.
T'hus

dimg N < dimF, H = h(H) = h(B) + h(H/B).

I'rom the definition it is clear that the dimension of N as a H x H-module is
al most that as a (diagonal) H-module. If H were nilpotent then (6) applied
to an embedded copy of F,(B x B) in N would ensure that

dimeHN 2 FP(B X B) = 2h(B)

and thus we could deduce that h(B) < h(H/B). However we are interested
in the case where H is not virtually nilpotent and there is no result like
(6) available. However by ad hoc growth arguments one can still show that
h(13) < h(H/B). This inequality is also valid under the weaker assumption
that A’ M is finitely generated. The argument is similar but there is the
added complication that A% M, rather than being a module over F,(H x H),
the tensor square of T, /1, is only a module over the symmetric square, the
subring of the tensor square consisting of elements fixed under the canonical
mvolution.
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In fact the basic case in the proof of Theorem E is when H/B acts faith-
fully and rationally irreducibly on B. In other words H/B is isomorphic to
a group of units of the ring of integers of a number field with additive group
isomorphic to B®yz Q. In our context we deduce from Dirichlet’s unit the-
orem that h(H/B) < h(B). This contradicts the inequality arising from the
finite generation of A2 M.

4.2 Theorem B is an immediate corollary of the following module result, the
nilpotent case of which was Proposition 8.

Proposition 9 Let H be a polycyclic group and M be a finitely generated
Z H-module with N> M finitely generated. Then there is a normal subgroup K
of H with H/K virtually nilpotent of class 2 so that some positive power of
the augmentation ideal of K annihilates M.

Proof. We suppose otherwise and consider a minimal counterexample M in
the sense that all of its images satisfy the conclusions of the proposition. As
usual M is either Z-torsion-free or of prime exponent, and so for any non-zero
submodule M; we have A® M, embedded in A3 M. Thus M, inherits finite
generation of its exterior cube from M and is also a minimal counterexample
to the proposition.

From Theorem E there is such an M; upon which H acts as a virtually
nilpotent group. By passing to a subgroup of finite index we see that M is
a counterexample for some finitely generated nilpotent group, contradicting
Proposition 8.
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Semigroup presentations and
minimal ideals

C. M. CAMPBELL, E. F. ROBERTSON, N. RUSKUC & R. M. THOMAS

1 Introduction

The purpose of this paper is first to give a survey of some recent results con-
cerning semigroup presentations, and then to prove a new result which enables
us to describe the structure of semigroups defined by certain presentations.

The main theme is to relate the semigroup S defined by a presentation II
o the group G defined by II. After mentioning a result of Adjan’s giving
a sufficient condition for S to embed in (7, we consider some cases where S
maps surjectively (but not necessarily injectively) onto G. In these examples,
we find that S has minimal left and right ideals, and it turns out that this
is a sufficient condition for S to map onto G. In this case, the kernel of S
(i.e. the unique minimal two-sided ideal of S) is a disjoint union of pairwise
isomorphic groups, and we describe a necessary and sufficient condition for
these groups to be isomorphic to G.

We then move on and expand on these results by proving a new result
(Theorem 9), which is a sort of rewriting theorem, enabling us to determine
the presentations of the groups in the kernel in certain cases. We finish off by
applying this new result to certain semigroup presentations and by pointing
out its limitations.

2 Semigroup and Group Presentations
We will be considering presentations II of the form

< A1,02y ey @n 0 = Br,02 = Boyeeeey Qi = Brn >,

where n > 1, m > 0 and each a; and each f; is a non-empty word in the
letters ay, az, ....,an. If S is the semigroup, and G is the group, defined by II,
Lhen we have a natural semigroup homomorphism ¢ from S to G mapping
cach generator of S onto the corresponding generator of G.

It is clear that ¢ need not be surjective in general; for example, if m =
(), then we have a free semigroup, and the mapping ¢ is injective but not
surjective. This is a particular case of a more general situation. If II is a
presentation as above, we can form a graph I'y, by taking {ai, a2, ....,as} to
he the set of vertices of I'y,, and then joining a; to a; in I'z, if @; and a; occur
as the initial letters of the words a; and B for some relation o = B in
1. We call Ty, the left Adjan graph of TI. The right Adjan graph Tr of I is

defined similarly, but, we take a; to be joined to a; here if a; and a; occur as
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the final letters of oy and B for some relation oy = Bx. The following result
was proved in [1] :

Theorem 1 Let S and G be the semigroup and group respectively defined by
the presentation I1, ¢ be the natural homomorphism from S to G, and 'y, and
T'r be the left and right Adjan graphs of I1. If neither Ty, nor T contains a
cycle, then ¢ is injective.

A geometric proof of this result was given in [10]. The case where m = 0,
so that 'y and T'g are null graphs, is therefore a special case of Theorem 1.

However, there are situations where the mapping ¢ is surjective. One exam-
ple where this occurs comes from the class of presentations for the Fibonacci
groups. Recall that the Fibonacci group F(r,n) is the group defined by the
presentation

Ap—1Cpee@prog = Gr_1,0701...87-1 = Ay > .

We let S(r,n) denote the semigroup defined by this presentation. Before we
explain the relationship between F(r,n) and S(r,n), we need some terminol-
ogy.

If S is a semigroup, then a subset R of S is said to be a right ideal of S
if Rz C R for all z in S, and a subset L is said to be a left ideal if L C L
for all z in S. Given this, we can state a result from [3] about the Fibonacci
groups and semigroups :

Theorem 2 Ifr > 2, n > 1 and d = ged(r,n), then S(r,n) is the union
of d pairwise disjoint right ideals, each of which is a subgroup isomorphic to
F(r,n).

This answers, in the affirmative, a conjecture made in [6], and also, inde-
pendently, by Leonard Soicher. The natural homomorphism ¢ from S(r,n)
to F'(r,n) induces a group isomorphism between each of the right ideals and
F(r,n). In particular, ¢ is surjective (though obviously not injectiveifd > 1). -

In fact, Theorem 2 is a special case of a more general result. We define
the generalized Fibonacci group F(r,n,k) to be the group defined by the -
presentation

and let S(r,n,k) denote the corresponding semigroup; see [11] for a survey
of the Fibonacci and generalized Fibonacci groups. Then we have from [3] :
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Theorem 3 (i) If r > 2, n>1,n andr+k —1 are coprime, and d =
ged(n, k), then S(r,n,k) is the union of d pairwise disjoint left ideals,
each of which is a subgroup isomorphic to F(r,n, k).

(it) Ifr > 2, n > 1, n and k are coprime, and d = ged(n,r + k — 1), then
S(r,n, k) ts the union of d pairwise disjoint right ideals, each of which
is a subgroup isomorphic to F(r,n, k).

Since F(r,n,1) is just F(r,n), Theorem 2 is just a special case of Theorem
3. In fact, the proof of Theorem 3 yields the following more general result :

Theorem 4 Let S be the semigroup and G be the group defined by the pre-
sentation

I =<aj,az,...,an: 00 = 01,02 = gy eeeey @ty = ay > .

(i) Suppose that each o; is a word of length two or more in the letters
ay, @z, .... , ayn and each a; occurs as the first, second and last letters
of three of the o;. Assume further that the right Adjan graph of 11 is
connected and let d denote the number of components in the left Adjan
graph of I1. Then S is a union of d pairwise disjoint right ideals, each
of which is a subgroup of S isomorphic to G.

(it) Suppose that each o; is a word of length two or more in the letters
ay, as, .... , a, and each a; occurs as the first, second-to-last and last
letters of three of the a;. Assume further that the left Adjan graph of
II is connected and let d denote the number of components in the right
Adjan graph of II. Then S is a union of d pairwise disjoint left ideals,
each of which is a subgroup of S isomorphic to G.

The proofs of Theorems 2, 3 and 4 in [3] are couched in terms of the Green’s
relations in the semigroup. If S is a semigroup, we define a relation R on S
hy @ R bif a and b generate the same right ideal of S. We also define a similar
relation £ in terms of left ideals, and set H = R N L. Green’s Theorem [9]
states that, if H is an H-class, then either H*NH =  or else H is a subgroup
of S. The proof in [3] essentially proceeds in two stages; first one identifies
the R and L-classes to get a decomposition of the semigroup into subgroups,
and then one shows that the subgroups are isomorphic to the groups defined
by the same presentation.

A similar sort of result to Theorem 4 was obtained in [5], where the semi-
proups S defined by the presentations

<A1, 02, ey @l =0 (1 <0 < n),aiaﬁ =aal (1<i<j<n)>
were considered, and a resull was obtained linking the structure of the semi-
proups (when finite) to thatl of the corresponding groups G, Il m is odd, then
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S is finite if m and 3 are coprime, or if n < 3, and there is a unique minimal
left ideal, which is also the unique minimal right ideal and is isomorphic to
G. If m is even, then S is finite if and only if m < 4. In this case, we have
several minimal left ideals, each of which is isomorphic to G, and their union
is the unique minimal right ideal of S.

3 Minimal Ideals

We have, so far, described some specific cases where the semigroup maps
onto the corresponding group. In many other cases we looked at, we found
similar results, in that the semigroup defined by a presentation II not only
mapped onto the group G defined by II, but also contained one or more copies
of G. However, we discovered examples where the semigroup defined by II
was made up of copies of a group other than that defined by II. We want
now to discuss this situation and to put the results we have mentioned so
far into a more general context. With this in mind, we introduce some more
terminology.

A subset of a semigroup S which is both a right ideal and a left ideal is said
to be a two-sided ideal of S. A semigroup S can have at most one minimal
two-sided ideal; if such an ideal K exists, then K is said to be the kernel of
S. In the cases we shall be considering, the semigroups will usually have both
minimal left and right ideals, and, as we shall see, this is enough to force the
map ¢ to be surjective. (This contrasts with the case of the free semigroups,
for example, mentioned above, which do not have minimal left or minimal
right ideals.)

We have the following standard result from [7] :

Theorem 5 Let S be a semigroup with minimal right ideals {R; : i € I}.
Then RN R; =0 fori #j and S has a kernel K = J{R; : i € I}.

There is (hardly surprisingly) an analogous result for left ideals. We then
have :

Theorem 6 Let S be a semigroup with minimal right ideals {R; : 1 € I} and
minimal left ideals {L; :j € J}, and let H;; = R;N L; for all (i,5) € I x J. :
Then :

(i) H;; is a group for all i and j, and H;; is isomorphic to Hy; for all i,
7, k and l.

(ii) If e;; is the identity of the group H;;, then R; = e;;S, L; = Se;; and
H;=RL;j=R,NL;=e;;Se; foranyi and j.

We see from Theorems 5 and 6 that, provided our semigroup S contains
minimal right and left ideals, the kernel K of S exists and consists of a
collection-of pairwise disjoint isomorphic subgroups. If S is defined by the
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presentation II, G is the group defined by II, and the groups in K are all
isomorphic to H, then we want to investigate the relationship between G and
1. This is described in the following result from [4] :

Theorem 7 Let S be the semigroup, and G be the group, defined by the
presentation II, and suppose that S possesses both minimal left and minimal
right ideals. Let ¢ be the natural homomorphism from S to G, L be a minimal
left ideal of S, R be a minimal right ideal, and let H be the group RN L.
Lct E denote the set of idempotents in K. Then élg : H — G is a group
« pimorphism. Moreover, ¢|g : H — G is a group isomorphism if and only if
I¥ is a subsemigroup of S.

By an idempotent, we mean an element e such that e = e. It was noted in
[1] that, since the idempotents in a minimal left (or right) ideal are necessarily
closed, Theorem 7 gives :

Corollary 8 Let S be the semigroup, end G be the group, defined by the
presentation I1, and suppose that S possesses minimal left ideals and a unique
minimal right ideal (or minimal right ideals and a unique minimal left ideal).
Then every minimal left ideal (respectively every minimal right ideal) is a
subgroup tsomorphic to G.

This result puts Theorems 2, 3 and 4 into perspective. In those cases, we
had a unique minimal left or minimal right ideal, and so the subgroups in
the semigroup S defined by the presentation II have to be isomorphic, by
Corollary 8, to the group defined by II. On the other hand, many presenta-
tions II define semigroups where the idempotents in the kernel do not form
a subsemigroup, so that, by Theorem 7, the kernel is composed of subgroups
not isomorphic to the group defined by II. In a case such as this, we want a
method for determining a presentation for these subgroups.

1 A Rewriting Theorem

W now demonstrate a method for determining the presentation of the groups
in the kernel of a semigroup. We show that, under the additional hypothesis
Lhal the semigroup contains an idempotent satisfying certain properties, there
14 a reasonably straightforward way of deriving the required presentation. To
he more precise, we shall prove the following result :

Theorem 9 Let S be the semigroup defined by the presentation
M= <apa: et = a0t = a3,00 = Br,yeeennne Q= B >,

where ng > 0, ng > 0, m > 0, and each a; and each B; is a non-empty word
i «wy and ay. Supposc furlher that L is a minimal left ideal of S, R is a
mmimal right ideal of S, Il is the subgroup LN R, and that the idempotent e
m 1 satisfies :
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(E1) edieas = ealay for 1 < i< ny;
(E2) ediea; = eaba; for 1 < i< ny.

Let e = alvy, where t € {1,2}, p > 0, and v does not start with a;. Let
= {a1,a2} and B be the alphabet {z;r :1 < j < 2,1 <k < n;}, with the
conventzon that z;; = z;x if ] = k (mod n;). We define a map ¢ : At — B*

by : al¢ = xi; and (maiane)$ = (mai)$(e;nz)é if i # j. Then H has a
presentation < B: R >, where R is the set of relations :

() (a§iosaf?)d = (a5 Biaf2)d, Jp € {1,2}, 1 < hy <my,, 1L <i <y
(i1) (aje)g = aj¢, j € {1,2}, 1 <k <ny;
(iii) (ea%)p = ok, j € {1,2}, 1 <k <ny;
(iv) Ttg4p = TeqTeyp if € s of the form ala] (else no relation here).

To prove Theorem 9, we define a map % : B¥ — A* by z;;9 = edle,
(n¢)¥ = (n¥)(¢¢). We proceed via three lemmas; to avoid undue repetition,
we will not repeat the hypotheses of Theorem 9 in each case.

Lemma 10 For any n € A*, n¢yp =ene in S.

Proof. We proceed by induction on the ]ength of n, where we are takmg the
word a}'a}’....al* to have length k. If n = o}, then n¢y = z; ;¢ = eale. If
n = al C , Where (qﬁz/; = ee in S and ¢ does not begin with a;, then ¢y =
(zi;¥)(CPY) = ealeele = eal leCe = eal(e = ene as required.

Lemma 11 If G is the group defined by the presentation < B : R >, then ¢
induces a group epimorphism 6 : G — H.

Proof. From the properties (E1) and (E2), it follows easily that the z; ;¢
generate H. We now need to show that, for every relation o = 8 in R,
ayy = By in H. This follows for the relations (i), (ii) and (iii), using the
relations in II, e? = e and egtp = ene. To prove the result for (iv) (when e is
of the form afy = aféaf), note that, as e is in the kernel of S, there exists &
such that eyé = e. Now z¢ 44,0 = eag""’e = eal™Peyt = eal’Pyt = ealet =
eajeet = eajealv€ = eajealeyé = eajeale = (z14%)(z:p%) as required.

Note that, since II is a presentation for S, it follows from the relations in
(i) that, if « = B in S, then a¢ = B¢ in G, so that ¢ induces a map from S
to G. Moreover, by relations (ii) and (iii), we have that (ew)¢ = (we)¢ = wé

o,
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L.emma 12 If G is the group defined by the presentation < B : ® > and
iy € BY, then np¢p =17 in G.

I’roof. 'We proceed by induction on the length of . If = z;, then n¢¢ =
(cal e)¢ =al¢ =z;; =1n. Solet g = ; ;¢ with (¢¢ = (in G. If the last letter

of ¢ is ot a;, then nipg = (eale(($))$ = (calee((¥))$ = (eale)(e(())é =
(al$)(( @) = =; ;¢ = n. Note that we did not need relation (iv) here. On the
other hand, if e = a}éa}, then

1bé = (eale(())d = (ealee((y))¢ = (eaiabSalalsal(())é
= (eala?d)es,g4p(6a3(())d = (ealald)pwe, z1p(6ai (1)) =
(ealalbal)$(ab8al(¢))d = (eale)d(e((¥))d = (ald)((¥d) = z:;¢ = 1.

lence we have the result.

’roof of Theorem 9. By Lemma 11, 1 induces an epimorphism 8 from G to
11, and, if u) = v in H, then u = up¢ = vi)¢d = v in G by Lemma 12, so
that @ is injective. Hence @ is a group isomorphism.

b Application of Rewriting Theorem

We will now demonstrate an application of Theorem 9. We consider semi-
proups defined by presentations of the form

at+l __ c,..b

M=<rs:r=rs* =5 rsrs® =% >.

In order to prove the existence of a suitable idempotent, we need the following
{(romewhat technical) result :

P’roposition 13 Let S be a semigroup containing elements r and s satisfying
the relations r® = r, s°t! = 5, and rs°rs® = s%r. Let m = ged(a,b) and n =
wed(a,d). Then :

(i) srs® = sr;

(11) sr?s® = sr?;

2 N, . oin ; .
(i) risr = s fori > 1;

(10} srsimr? = gpgt™ Jora 2> 1;
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Proof. (i) Using the relations s**! = s and rs rs" = s%. we have that
b
srs® = gotl-dgdpga — s“"’l"‘rscrsbs“ sotl-dpgepgh — s“"’l dgdp = gp,
(i) Using (i), we get that sr?s® = srs®rs® = srs® r= sr?

(iii) First note that r2s%r = r2rsrs® = rsrs® = sir. Now if r2skdp = skdp,

then r2s(+1)dy — r2sk“3dr = r2skpsopsd = shdpgerst = skd dp = glktl)dy

so that r2s*r = s*r for all 4, and hence, since s**! = s, we have that
r2s"r = s for all i
(iv) f f = a — b, then srsfr? = 0~ Flgdpsfp? = ga-dtlpgepgap? —

s*~pger [by (1)] = s*~lrscrs? [by (i)] = s*~**s%rsf = srsf. Then note
that, if srs¥/r? = srs*/| we have srs¥tVfp2 = srsfsfp? = srshfr2sfp? =
srskir2sl = srskfsl = srst1f Hence srs'fr? = srsi/ for all ¢, and so
srs'™r? = srs™™ for all 1 as required.

(v) sr2s"™r? = srsrsi™r? [by (i)] = srs®rs™ |by (iv)] = sr2s'™.

Having established these facts, we can now find a suitable idempotent in
our semigroup.

Proposition 14 Let S be a semigroup containing elements r and s satisfying
the relations r®> =r, s%t! = s, and rs°rs® = s%r. Let e = s°r%. Then e is an
idempotent, and

(i) eries = er's for1 <i < 2;

(i) esier = es'r for 1 <i < a.

Proof. First Proposition 13 (ii) gives €? = 3“7'25“1'2 = s°r’r? = e. Then
Proposition 13 (i) and (ii) give er'es = s*r**s°r?s = s*r**irls = er's, so
that (i) holds. We also have es'er = s®r’s's®r’r = s*r?s'r = es'r, so that (ii)
holds.

The upshot of Proposition 14 is that, if S is any semigroup defined by a
presentation of the form

o+l — g rsrsb = $Or >,

OD=<rs:r¥=rs
then we may apply Theorem 9 to find a presentation for the groups in the
kernel of S provided that sr generates a minimal left and a minimal right*
ideal. If we let m and n be defined as in Proposition 13, then we do, in fact,
have minimal left and right ideals if m = 1 or n = 1; however, we find that
there is a unique minimal left ideal if m = 1, and a unique minimal right ideal
if n = 1, and so Corollary 8 gives that the groups in the kernel are defined
by II. We would like to consider a case where Corollary 8 need not apply,
and, to that end, we will consider the case b = d = 2 with @ even (so that
m = n = 2). We also need that ¢ is odd; we shall see later (Theorem 22)
that, if ¢ is even, we do not have minimal left or right ideals. However, for
odd ¢, we have :
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Proposition 15 Let S be the semigroup defined by the presentation

D= <rs:r®=rs =5 rsrs’ =s%r >,
and suppose that a is even and c is odd. Then S has two minimal left ideals

und three minimal right ideals.

‘'he proof of this result is a little involved, and so we break it up into a
nequence of lemmas; again, we will not repeat the full hypotheses in each
case. Note that the set I of elements represented by a word containing sr is
an ideal of S, and so contains any minimal left or right ideal.

L.emma 16 s? commutes with sr? and (rs°r)? = s°r?,

2 2

I mof By Proposition 13 (iii) and (v), we have r2s?r = s¥r and srls’r? =
arts?, so that s2sr? = sr?s%. Then Proposition 13 (i) gives

a— 2)2 —2)2 — 32rsarsa -2 — 327_230,-—2 — 4% 2‘

(rsr)? = (rs°rs’s (s*rs

l.emma 17 Let Ly and Ly be the left ideals Ssr and Ssrs respectively. Then
! LyUL,.

I’roof. Since any word involving sr ends in sris¥ = sr's¥r? [Proposition
I3 (iv) or (v)] = sris® 2¥%g2py = grig®~2+2psorg?r or sris¥t! = srig?irls
[Proposition 13 (iv) or (v)] = sr's® 2+ rsrs’rs, any element of I lies in L,

or i/'z.

LLemma 18 Let Ry, Ry and R3 be the right ideals srS, rsrS and r*srS re-
u/n'(-l,ively. Then I = R, U R, U R3.

I'toof. Any word in I starts with rs¥r or r's%*!r for some i > 0 and
;oL where we interpret r° as the empty word. Now ris?itly = pigti-1g2p =
1t lrstrs? = = risr( (for some () and, given this, we have that ris*r =
Pt g = r'sz"2rs rs? = ... =rig’r( = r’+13 rp = rittsrd (for some ¢, 5

al ).

Lermama 19 Ly and Ly are distinet minimal left ideals.

I’roof. We prove that, given any word (, there is a word 7 such that n{sr =
wrin S since Ly and Ly are Ssr and Ssrs, this gives minimality. We proceed
hy induction on the length of { (where we are taking length as in Lemma
10). I’remult,iplying by » il necessary, we may assume that (sr is of the form
ke, girls n‘) or r2skr). We can premultiply sirs*rd by srs®~ to get
ar st m) = sr2s* 719 [using Proposition 13 (i)]. So we are left with the cases
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s'r?s*rd and r2s*rd. There is no problem if k is even by Proposition 13 (iii);
so we assume that k is odd.

If we premultiply s‘r?sfrd by s s%+1=i then we get (using Lemma 16
and the fact that ¢ — 1 and @ + k — c are both even) that s**~!r2sr2skrg =
seriserishrd = skrlsriscrd = skr(rser)?9 = skrs®r?9 = s*rd [by Proposi-
tion 13 (i)]. Similarly, we may premultiply r2skrd by s2°~1r2s to get s*r as
required. For distinctness, note that words of the form (sr® or (sris% rep-
resent elements of L; and words of the form (sr*s**! represent elements of
L,. It is now clear that any relation in II transforms a word representing an
element of L; (1 = 1 or 2) to another word of the same form, so that the L;
are distinct.

20—17,2

We have a similar result for right ideals :

Lemma 20 R;, R; and R3 are distinct minimal right ideals.

Proof. As in the proof of Lemma 19, we show that, given any word ¢, there
is a word 7 such that sr{n = sr in S. We again proceed by induction on the
length of (.

Postmultiplying by r if necessary, we may assume that sr( is of the form
dsris? or Psrisir. Postmultiplying dsris’ by s47 yields 9sris® = dsr’ [by
Proposition 13 (i) or (ii)]. If j is even, then ¥sris’r? = dsris’ [by Propo-
sition 13 (iv) or (v)]; so we assume j is odd. By Lemma 16, dsrisir? =
Psristris®ti=c; postmultiplying by s®~7ters?r yields that dsriser?sirsir =
JsrisCrs’r [Proposition 13 (ii)] = 9sr*(rsers?)r = Jsritisir? = Psritls?
[Proposition 13 (iv) or (v)].

For distinctness, we argue as in the proof of Lemma 19, noting that words
of the form s**'r( represent elements of R;, words of the form rs¥+ir( or
s%r( = r?s%r( represent elements of Ry, and words of the form r2s%*+1r( or
rs¥r({ represent elements of Rs.

Lemmas 19 and 20 complete the proof of Proposition 15. We may now use
Theorem 9 to derive a presentation for the subgroups in the kernel of our
semigroup. :

Suppose that we have a semigroup S defined by the presentation

M=<rs:r=rs* =3 rsrs? = s%r >,

where a is even and ¢ is odd. To avoid confusion in what follows, we take '
1 < ¢ < a. As in Theorem 9, using the idempotent e = s?r? (which satisfies
the appropriate hypotheses by Proposition 14), we introduce a new alphabet
B = {21,%2,Y1,Y2, -, Yo}, and define ¢ : {r,s}* — BY by r'¢ = z;, s'¢ = s,
and (nuvne)¢ = (mu)d(vnz)é if {u,v} = {r,s}. Then the kernel K of Sis a
disjoint union of subgroups with presentation < B : ® >, where ® is the set
of relations

(tirsers®u?)g = (t's?rud) g, (tie)d = t'g, (et)d = t'¢p il t,uC {r,s}.
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Ihe relations of the form (t'e)¢ = t'¢ and (et')¢ = t'¢ are easily seen to
he equivalent to z; = y, = 1. The relations of the form (t'rs°rs’u’)¢ =
(I's*ruf)¢ are then

YeZ1Y24j = T1Y221Yj, T1YcT1Y2+; = Y2T1Yj, YcT1Y2 = Z1Y221,
T1YcT1Y2 = Y271, YcZ1Y2T1 = T1Y2, T1YcT1Y2T1 = Y2,
YiT1YeT1Y2T1 = Y2+, YiT1YcT1Y2 = Y2441,
YiT1YcT1Y2+5 = Y24iT1Y;5, T1YcT1Y2 = Y221, YcT1Y2 = T1Y2%1,
where we have deleted all occurrences of the trivial generator z, and where
1 and j range over 1,2, ....,a. The first two relations here imply that z2 = 1.

Il'we add this relation (and write z; as z to cut down on the subscripts), we
find that our presentation is

<&, Y1, Y20 Ya t T = L yexyay; = zyazy;(1 < § < a),yozy2 = Y01,
1:0YexYe® = Yo4i(1 < ¢ < @), YyikYeTY2r; = Yo4izyi(1 < 46,5 < @),y =1 > .
The second and fifth relations give that y;y2 = y24i, and adding this new
1clation makes the fifth relation redundant. The second and third relations

pive that yor; = y2y;, and adding this new relation makes the second relation
redlundant. So we now have

< ZT,Y1,Y25 - Ya ¢ 372 = 1’ Yo = y2?}j(1 < .7 < a), YeTY2 = TY27,
YizyYezya® = Y24i(l i< a),yiye = y2i{l S0 < a)yya = 1>
T'he relations y;zy.zy2T = yo4; are now easily seen to be redundant via the
remaining relations. We may eliminate y3 = y192, ys = 11%2, ... , Yau1 =
uf2-1 2 3 af2
iy » Y4 = Y3, Y6 = Y3, - 5 Ya = Y3 to get

/2 (e=1)/2

<z, YLy 2t =y =1y = Y2Y1, Y1Y2 TYs = TY2T > .

Write y; as z, add t = 4,2"V/2, and delete y; = t2(179/2 to get :
<z t,z:2?=1tz =2t ztzz = z:c,z“f‘) =1>,

which, on eliminating ¢ = zzzz"1z, becomes

<z,z:22 =2 = g2z Nz 22) 2 =1 > .

L.t /] be the group defined by this presentation. If we introduce p = zz7!

we get

zz,
<z,zZpizt=2Y =1,p=gz ez, zpz = p 7, zpz = p* >,

lrom which it is easy to deduce that H is metabelian of order a(2%/2 —1). On

the other hand, if (7 is the group defined by II, i.e. G is defined by

) o .
<yt W rstrs? = st >,
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S L A

J
then the last relation implies that s° is conjugate to r in G, and so s?* = 1. If!

we let f = ged(£,¢), we see that s/ = 1. Now ¢ is odd, so that ¢ = f (mod
2f), and so we have

2

<rs:r?=s7 =1rsfrs® =% >,

e e taR i Tl

which defines the group H = H/%~2 (in the notation of [2]), which is
metabelian of order 2f(2/ — 1) by Theorem 8.2 of [2]. So we have proved

B e e

Theorem 21 Let S be the semigroup and G be the group defined by thej
presentation

a+1

<r,s:r3=r,s =s,rsrs =sr>,

where a is even, ¢ is odd and 1 < ¢ < a, and let f = gcd(5,c). Then G is
metabelian of order 2f(2f — 1), while the kernel of S is a disjoint union of
siz copies of a metabelian group H of order a(2*/2 — 1). In particular, H is’
tsomorphic to G if and only if a = 2¢c.

6 Limitations of Rewriting Theorem

IREC APy o

It should be pointed out, however, that Theorem 9 does not apply to all:
semigroups defined by presentations of the form

<rs:rd=r s =g rsrs = str >
as the next result shows.

Theorem 22 Let S be the semigroup defined by the presentation

a+l C,..b

O=<rs:r=rs =5 rsrs’ =% >,

and suppose that ged(a,b,c,d) > 1. Then S does not have minimal left or
right ideals.

Proof. Let e = ged(a,b,¢,d), and add the relations s*** = s, r? = r and;
rs® = s°r = r to II to get

e+l

<rs:rl=rs =srsf=sr=r>.
This is a monoid M with identity s°, and, as a monoid, is presented by :
<r,s:72=r,8°=1>. M does not have minimal left or right ideals, and,
since M is a homomorphic image of S, the result follows.

Theorem 22 explains why the assumption that ¢ is odd is rather important
in Proposition 15. We should also point out, that a semigroup imay not possess
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n nuilable idempotent even when it does have minimal left and right ideals.
lor example, if we consider the semigroup S defined by the presentation

3 2 2 2,2

=r,8 = s,(rs)® = (rs)?, rs®rsrls = rs’rls,

srstrsr = (sr)?, sris’r?sr = srisr,rsirsrs = rsrs,rsrs®rs = rsrs,

(s*r%)® = s%r? (rs?)® = (rs®)?, (sr?)2(s7)2(rs)?r?s? = (sr?)%s® >,

<rs:r

we notice that a word of the form u'viaw*z!, where {u,v} = {w,z} = {r, s},
1an only represent the same element of S as another word if that word is also
ol the form w'v? Bw*z! for some B. So there cannot be an idempotent e such
thal eries = er's and es’er = es'r. However, we used the programs described
in [12] to show that S is a finite semigroup of order 224, and so does possess
unnimal left and right ideals. In fact, the kernel of S has order 144, there
Iwing 6 minimal right and 12 minimal left ideals, so that the kernel is the
imon of 72 subgroups of order 2.
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Generalised trees and A-trees

I. M. CHISWELL

. T'he idea of a A-tree, where A is an ordered abelian group, was introduced
i [%. We shall reproduce the definition shortly, but for an account of the
hanic Lheory of A-trees we refer to [1]. In the special case A = Z, Z-trees

air closely related to simplicial trees (trees in the ordinary graph-theoretic
arnne). The connection is spelt out in Lemma 4 below, which shows that
A Lices may be viewed as generalisations of simplicial trees. However, there
are other notions of generalised tree in the literature, and our purpose here
}a Lo consider two of these, and their relation to A-trees.

I'irstly there is what we call an order tree. This is a partially ordered set
(1" - ) such that the set of predecessors of any element is linearly ordered,
that is, for all z,y,2 € P,if z < z and y < z, then eitherz <yory < z. It
I« ulso convenient to assume that P has a least element (this can always be
attanged just by adding one). By choosing a point in a A-tree, it is possible
v make the A-tree into an order tree. We shall show that, conversely, any
wder tree (P, <) can be embedded in a A-tree for some suitable A, so that
{lue ovdering on P is induced from the ordering on the A-tree defined by the
(image of) the least element of P. Order trees occur in set theory (see, for
#enniple, [7]), but our interest in them stems from the fact that that they
i our in the theory of pregroups ([6], [10]).

T'he other notion of generalised tree we shall consider was introduced by
Herelich in [5], and is obtained by writing down axioms satisfied by the set of
acgments in a A-tree. We shall show that any tree in the Herrlich sense can
fw- embedded in a A-tree in such a way that segments are preserved (we shall
ke a precise statement later).

Our construction makes use of ultraproducts, and for a description of these
miul their relevant properties, see §3 in [11] or Ch. 5 in [2]. We also show that
a «ountable order tree can be embedded in an R-tree, using more conventional
linuting processes, and there is a corresponding result for Herrlich trees.

4 In this section we collect together the results we shall need to prove
the embedding results. We begin by giving the definition of a A-tree. If A
0 (lotally) ordered abelian group, a A-metric on a set X is a mapping
d N\ x X — A satisfying the usual axioms for a metric with values in R, and
piven such a metric the pair (X, d) is called a A-metric space. The mapping
\ A - A given by (a,b) — |a — b, where |z| = max{z, —z}, makes A itself
nfo a A-metric space. A segment in an arbitrary A-metric space (X, d) is the
miape of an isometry « @ [a,b] » X, where [a,b] = {z € A;a < z < b} (and
a - b). The endpoints of the segment are a(e) and o(b). A A-metric space
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z and y.
Definition. A A-metric space (X, d) is a A-tree if
(a) it is geodesic

(b) the intersection of two segments with a common endpoint is a segme‘
(c) if two segments intersect in a single point, which is an endpoint of bot-
then their union is a segment. '

This is the definition as given in [8]. It is a consequence of (b) that giv
z,y in X, there is a unique segment in X whose set of endpoints is {z,y}. 4
A-metric space with this property will be called geodesically linear, and th§
unique segment with set of endpoints {x,y} will be denoted by [z, y]. T
next result is well-known, and the proof is left as an exercise. We shall on}§

use it in the case that (X, d) is a A-tree, a special case proved in Cor. 2.12 .

[1).

Lemma 1. Let (X,d) be a geodesically linear A-metric space, and let x,y-'
X. Then a point z € X is in the segment [z,y] if and only if d(z,y) 3
d(z,2) + d(z,y). :

be a A-tree, and let & € A, with § > 0. Choose a basepoint p € X, and defing
for 2,y € X,

oy = 5(dlz,p) + d(y,p) — d(z,y),

an element of 1 A. Following Gromov, we call (X, d) §-hyperbolic with resped]
to pif, for all z, y and z € X, z-y > min{z - z,y - 2} — 8. If (X,d) is §
hyperbolic with respect to one point, then it is 26-hyperbolic with respe
to any other point (see Proposition 1.2 in [4]). Consequently it makes sen
to speak of a 0-hyperbolic space without reference to a basepoint. Alsd
(X, d) is é6-hyperbolic with respect to every point in X if and only if, for a§f
T,y,2,t € X, ‘

d(z,y) + d(z,t) < max{d(z,z) + d(y,~t), d(z,t) +d(y,2)} + 26.

See Proposition 1.6 in [4]. Consequently, (X, d) is 0-hyperbolic if and only i
it satisfies this condition with § = 0 (the so-called four-point condition).
geometric interpretation of this is given by the “H-Proposition™ (2.15 in [1]}j

A-trees can be characterised as follows [1; Theorem 3.17]. It can be checked
directly that, if condition (ii) in the the lemma below holds for one choice of
basepoint, then it holds for any other choice of basepoint. 3



I M Chiswell 45

lemma 2. The A-metric space (X,d) can be isometrically embedded in a
A tree if and only if

(1) (X,d) is 0-hyperbolic.
() torallz, ye X, z-y € A.

Further, (X,d) is a A-tree if and only if (i) and (i) hold, and addition-
ally

(i) (X,d) is geodesic.

el 1" be a simplicial tree, A an ordered abelian group, and suppose there
le # mapping w assigning to every edge e of T an element w(e) € A with
w(r) - 0. Then (T,w) is called a weighted tree. (We may view w as defined
wi inoriented edges; alternatively, if we view unoriented edges as consisting
il Llwo oppositely oriented edges e, & we require w(e) = w(€é).) Given vertices
woean ) let ey, ..., e, be the edges of the unique reduced path in 7" from u
to ¢, and define
n
d(u,v) = Y w(e)
=1

{and d(u,u) = 0). Then it is easily verified that d is a A-metric.

Lemma 3. Let X be the set of vertices of a weighted tree T. Then with
the wetric d just defined, (X,d) satisfies (i) and (ii) of Lemma 2, so can be
tavmctrically embedded in a A-tree.

I'roof. Let p,z,y be vertices of T. The reduced paths from p to z and from
p 1o y intersect in a reduced path, say ey,...,ex, and with respect to p as
hanepoint, -y = F, w(e;). The lemma follows easily from this.

In the special case A = Z, and w(e) = 1 for all edges e, the metric d is
vatled the path metric on T'. The next result is Theorem 10 of [8], to which
we refer for hints on the proof (but note that it is Axiom (c) for a A-tree,
nal (1), which implies there are no loops in the tree, indeed Axiom (b) is
pslundant when A = Z).

Lemma 4. Let (X, d) be a Z-metric space. Then (X,d) is a Z-tree if and
ondy of there is a simplicial tree T such that X is the set of vertices of T, and
d o the path metric on X.

Mo, The proof of Lemma 3 shows that for any z,y € X, the set of vertices
vl 1" which belong to the segment [z,y] in X is the set of all vertices of T on
i reduced path in T from @ to y. For in the proof, the point p lies in [z, y]
iland only if -y = 0, by Lemma 1. This happens if and only if £ = 0, which
1= canivalent to saying thal p lies on the reduced path between z and y. This
apphes in particular to the path metric in Letnma 4.,
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The final result we need is essentially that an ultraproduct of A-trees is?
*A-tree, where *A is an ultrapower of A. This is all we need, but with a vi
to possible further applications, we shall be rather more general. Let I be
index set and let D be an ultrafilter in P(I), the Boolean algebra of all subset
of I. If {X;;1 € I} is a family of sets, we shall denote the equivalence cla
of an element (z;);er of [Tier X; in the ultraproduct [[;e; Xi/D by (z:)ier.

For every i € I let G; be a group acting as isometries on a A;-tree (X;, d, J
where A; is an ordered abelian group. Put

G =Le1 Gi/D, A =Tlier Ai/D, X =Tlier Xi/D

so that G is a group, A is an ordered abelian group and X is a A-metric spa(;j
with metric d = [J;c; di/D, that is,

d((z:)ier, (idier) = (di(zi, yi))ier-

These statements can be verified directly, and are manifestations of Lo§
Theorem (see [2] or [11]). Further, the actions of G; on X; induce an actiof
of G on X as isometries. Let £; denote the hyperbolic length function for th§
action of G; on X; (see §6 and Prop. 7.1 in [1]). We recall that an action §
a group as isometries on a A-tree is called free if every non-identity elemen|
of the group is hyperbolic, that is, has positive hyperbolic length. by

Lemma 5. In the situation just described, (X,d) is a A-tree, and if £ is th§
hyperbolic length function for the action of G on X, then £ = [[;c 4/ D.
particular, if G; acts freely on X; for almost all ¢ (i.e. the set of ¢ for whi f‘;“‘
G; acts freely belongs to D), then G acts freely on X. i

X from the X;, so X is a A-tree. (For a hlnt on the proof that X satisfies (m
see the proof of Lemma 3(i) in [3]). Choose a basepoint p; in X;, and talg
P = (pi)ier as basepoint in X. Then the Lyndon length function L; = L,, (s&
5.1 and 5.3 in [1]) is given by L;(g:) = di(pi, gipi) for g; € Gi. Consequently
if g = (gi)ier 1s in G, then the Lyndon length function L, is given by L,(g) :
(Li(g:))ie1. Hence, by Prop. 7.1(c) of [1], 2

£(g) = max{L,(g*) — Ly(9),0}
= (max{Li(¢:*) — Li(¢:),0})ier
= (€:(gi))ier

that is, £ = [Tie; 4/ D as claimed. The last part of the lemma follows
diately.

3. We now prove our embedding results for order trees. Let (X,d) be
A-tree and choose a basepoint zp € X. We define a binary relation < on Xi
by: = <y if and only if z € [zo,y]. It is not difficult to check that this maked
(X, <) into an order tree with least element zo. We shall not give the detailg
since we shall prove a more general result later. We call this the ordering or),;
X rclative to xg. i
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Il (£’,<) is an order tree with P finite, and with least element p, then P
#al he made into the vertex set of a simplicial tree, joining two elements z,
y ol I’ by an edge when z < y, but there is no element z € P such that
+ - -2y, where < is the strict partial order corresponding to < (see §2 of
[10]) ‘I'his defines a Z-tree (P,d) by Lemma 4, and it is easily checked that
the ordering < is the ordering obtained from this Z-tree as described in the
jmevions paragraph with ©o = p. We are now in a position to prove our first
i result.

Theorem 1. Let (P, <) be an order tree with least element p. Then there exist
wi ordered abelian group A, a A-tree (X,d) and a1 — 1 mapping ¢: P — X
anch that, if X is given the ordering relative to ¢(p), then z < y if and only
i M) < é(y), forallz, y € P.

hoof. Let ¥ be the set of all finite subsets of P which contain p. If Q € %,
ieal1icting the ordering of P makes @ into a finite order tree, and as above,
tJ hecomes a Z-tree, with metric dg, say, and the ordering is the ordering on
this Z tree relative to p.

lor () € 3, let ag = {R € ;Q C R}. Thenif Q' € ¥, agug' C ag Nagr,
ail ay # 0 since @ € ag. Therefore there is an ultrafilter D in P(X) such
that a € D for all Q € X. (See, for example, Cor. 3.5, Ch. 1 in [2]).

et X = [ges @/D with metric d = [Jgex do/D. Then by Lemma 3,
(\.d) is a A-tree, where A = Z®/D. For Q € %, define ¢g : P — @ by

¢Q(x):{x, fze@

p, otherwise

sl define ¢ : P — X by ¢(z) = (¢g(z))gex. Since ¢g(z) = z for all
1)1 g0, and agpzy € D, we have ¢(z) = (yg)ges if and only if yg = x for
alinost all @ (that is, the set of @ for which yg = z belongs to D). It follows
that $is 1 —1.

Suppose that ¢, y € P and z < y. It follows by Lemma 1 that, for all
‘J' "{p.:r:,y}a
do(p,y) = do(p, ) + do(z,y)

that s,

do(#q(p), da(y)) = do(dq(p), dq(z)) + do(dq(x), do(y))

lwcanse z,y,p € Q. Since agp 4 € D,

d(é(p), 6(y)) = d(¢(p), $(z)) + d(é(=), $(y))

hence () < ¢(y) in the ordering of X relative to ¢(p), again by Lemma L.
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Conversely, if ¢(z) < ¢(y), we have

d(¢(p), 4(y)) = d(¢(p), ¢(2)) + d(é(=), $(y))

which means that, for some A € D,

'
E

do(dq(p), d@(v)) = do(dq(p), ba(x)) + do(de(z), ¢o(y))

for all Q € A. Now ANay, s,y # 0 since it belongs to D, so if @ € ANaygy .y
we have dg(pry) = do(p, ) + da(z,y), and again by Lemma 1, 2 <y.

In the case that P is countable, we can show, by a different argument, th '
we may take A = R in Theorem 1. i

is countable. Then there exist an R-tree (X, d) and a1—1 mapping ¢ : P —
such that, if X is given the ordering relative to ¢(p), then z <y if and on

if $(2) < $(y), for all z, y € P.

Proof. Enumerate the elements of P as 20,271,835 -, where p = zo.

n =0,1,..., where the weight function w, takes values in A = Z[1/2]. _‘
Lemma 3, the set of vertices V(X,) of X, has a A-metric d, and can b
isometrically embedded in a A-tree, giving an induced ordering <,, on V(X
Explicitly, by the note after Lemma 4, z <, y if and only if z is a vertex o.f'

the reduced path from p to y in X,,. This sequence of trees will have .3;;‘
following properties: ]

(i) V(Xn) = {20, -, @a}
(ii) the ordering <, is the restriction of the ordering on P to V(X,,)
(iii) for all edges € of X, wy(e) > 1/271

(lV) for U, v € V(X —1)7 dn—l(“’ ’U) S dn(u7v) S dn—l(uav) + (1/2n—1)‘

Define X, to be the tree with one vertex zo and no edges, and X; to hav
two vertices zo, z; with a single edge e joining them, with wy(e) = 1. Suppos§
that X,,_, has been defined and satisfies (i)-(iv). Let z be the largest elemex
of {zo,...%s-1} such that z < z,. Let 41,...,%, be the minimal elemen
of {z € V(Xn-1);2n» < z} (note that m = 0 is possible). Then X,_; has

subgraph of the following form:

R
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let o = wy_1(e;), where ¢; is the edge joining z and y;. Modify X,_; to
ohtain X, by “stretching” the vertex z to an edge e joining z to z,, so that
#, how joins y; to zn. Put wy(e;) = a; and w,(e) = 1/2"7! leaving X,_,
unchanged otherwise. Thus X, has a subgraph of the form:

It 11 casily checked that properties (i)-(iv) are satisfied by X,,.

I, v € P, then dn(u,v) is defined for sufficiently large n, and by Property
(1v), (dn(u,v)) is a monotone increasing Cauchy sequence. Define d(u,v) =
iy oo dn(u,v), so d(u,v) > dn(u,v). By Property (iii), if u # v and v,
v v V(X,), then dp(u,v) > 1/2°1 > 0, so d(u,v) > 0. The other axioms
li o metric are easily checked and (P, d) is an R-metric space. Further, if
1.4, %t € P, they all belong to V(X,,) for sufficiently large n, and by Lemma
l

dn(z,y) + dn(2,t) < max{d.(z, 2) + dn(y,1), du(z,t) + du(y, 2)}

sl Laking limits as n — oo, we sce that (P,d) is 0-hyperbolic, hence by
Lemma 2 there is an isometric embedding of P into an R-tree, say ¢ : P — X,
For Lhe rest of the prool we shall identify = with ¢(x), lor z € P, and denote
the metric on X by d. We give X the ordering relative to g = p.
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Suppose z < y in P. For sufficiently large n we have z, y € V(X,). B
Property (ii) and Lemma 1, dp(z0,y) = dn(20,2) + dn(z,y), and taking limif
shows that z < y in X, again by Lemma 1.

Suppose that z £ y in P. Choose n so that z, y € V(X,). The reduce
paths from p to z and from p to y in X, intersect in a path from p to a vertej
q, say, and z # ¢. By definition of d,,

d‘n(p’ x) + dn(x’ y) = dn(P) Q') + dn(‘I, 'y) + 2d,,(q, x)
= dn(p’y) +2dﬂ(q7"‘c) i
> du(p,v) + (2/2°) L

by Property (iii). That is

dn(p,y) < dn(p, ) + dn(z,y) — (1/2"7%)
By Property (iv), for & > 1,

dn+k(p, y) < d (p’ + z

n+1
=0 2

1
(p,y) + Z S

1=0

1
=dn(p,y) + o T

Let £ — oo to get

d(p,y) < du(p,y) +(1/2°7)
From (1) and (2) we obtain

d(p,y) < dn(p, ) +da(z,y) - (1/2"7")
< d(p,z) +d(z,y) — (1/2%1)
< d(p,z) + d(z,y).

By Lemma 1, z € y in X. This proves the theorem.

4. It remains to prove our embedding results for trees in the sense of Herrli
We recall the definition [5; (2.1)]. 5
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D) finition. A Herrlich tree is a pair (V,S) where Visaset and S: V xV —
I'(V) is a mapping satisfying:

(i) S(a,a) = {a} for all a € V;
() {a,b} C S(a,b) for all a, b€ V;
(ni) S(a,b) = S(b,a) for all a, be V;

(1v) for all @, b and c € V, the set S(a,b) N S(d,c) N S(c, a) has exactly one
member, denoted by u(a, b, ¢);

(v) for all @, b€ V,if c € S(a,b) then S(a,b) = S(a,c)U S(c,b).

Any A-tree (X,d) gives rise to a Herrlich tree (V,S) with V = X and
S(u,b) = [a, b]. Clearly Axioms (i)-(iii) are satisfied, (iv) follows from 2.12 in
[I] (where u(a, b, c) is denoted by Y(a, b, ¢)), and Axiom (v) follows from 2.13
i [1].

(liven a Herrlich tree (V, S), choose a basepoint p € V, and define a binary
iwlation < on V by: ¢ < y if and only if z € S(p,y). We shall show this
mnkes (V, <) into an order tree. This generalises the ordering on a A-tree
delined at the start of §3.

IMirstly, z < « for all £ € V by Axiom (ii). Secondly, if z < y and y < «,
then by the remark after Axiom (v) in [5], S(p,z) N S(z,y) = {z}. But
¥ S(p,z) by assumption and y € S(z,y) by Axiom (ii), hence z = y.
“uppose £ < y and y < z. Then z € S(p,y) and y € S(p, z), and by Axiom
(v), S(p,z) = S(p,y) U S(y,2), so ¢ € S(p, z), i.e. ¢ < z. Thus < is a partial
mdering on V.

Now suppose z, y < 2,50 z, y € S(p,2), and assume z £ y and y £ z. By
Aviom (v), S(p,z) = S(p,z) U S(z,2), so y € S(z,z). Similarly z € S(y, 2).
Hewee by Axiom (ii), z, y € S(z,2)NS(z,y) N S(y, z), so by Axioms (iii) and
{iv), r = y, a contradiction. Thus either z <y or y < z.

We could now obtain an embedding result for Herrlich trees by appealing
v I'heorem 1. However, we prefer to give a direct argument, similar to that
ul ‘I'heorem 1, which does not depend on a choice of basepoint. First we need
tu prove two lemmas.

Lemma 6. Let (V,S) be a Herrlich tree, suppose that , y € V and u €
“(1.y). Then for any z € V, either S(u,z) C S(z,2) or S(u,z) C S(y, 2).

I'vof. Take z € V, and let v = p(z,y,2). Since v € S(z,y), we have
Sy = S(z,v)US(y,v) by Axiom (v), so either u € S(z,v) or u € S(y,v).

Il v & S(z,v) then since v € S(z,z2), S(z,2z) = S(z,v) U S(v, 2z) by Axiom
1v), 50w € S(z,2). Henee, again by Axiom (v), S(z,z) = S(z,u) U S(u, 2),
wo Sy ) € S, z). Similarly, if v ¢ S(y,0) then S(u, 2) C Sy, 2).
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In the next lemma we use the term subtree as defined in (2.2) of [5)].

Lemma 7. Let (V,S) be a Herrlich tree and let X be a finite subset of V
Then there is a subtree (V',S") of (V,S) with V' finite and X C V.

Proof. Define V' = {u(z,y,2);z,y,z € X}. Plainly V' is finite, and X C V
since z = p(z,z,z). Let u, v, w € V. Then for some elements z;, y;, z; (1 §
i < 3) of X, we have u = u(z1,2s,3), v = p(y1,Y2,ys) and w = p(z1, 22, 23 i
We claim that, after suitable renumbering, ]

S(u,v) N S(v,w) N S(w,u) C S(z1,y1) N S(y1,21) N S(z1, 1)

hence by Axiom (iv) ,u.(u v,w) = u(z1, Y1, 21), in particular p(u,v,w) € V'.§

Now v € S(y,,yj) or % 76 7, so by Lemma 6, S(u,v) C S(u yi) for af
least two values of 7. Similarly S(v,w) C S (y,,w) for at least two values of
i. Since there are only three possible values of i, after renumbering the y
we may assume that S(u,v) C S(u,y1) and S(v,w) C S(y1,w). Again by
Lemma 6, since u € S(x;,z;) for ¢ # j, we have S(u,1) C S(zi,y1) for a§
least two values of 7. Similarly, S(y1,w) € S(y1,2) for at least two value§
of i. Therefore, after renumbering the z; and the z;, we may assume thaf
S(u,v) € S(z1,31) N S(22,1) and S(v,w) C S(y1,21) N S(y1, 22). 3

Once again by Lemma 6, S(u,w) C S(z;,w) for at least two values of ¢, s
renumbering z; and z; if necessary we can assume that S(u,w) C S(z1, w)§
Also, S(z1,w) C S(z1,2) for at least two values of i, and renumbering z{
z, if necessary, we can assume that S(u,w) C S(z1,21). This establishes -‘1‘3
claim.
By the remark after Definition 2.2 in [5], we obtain a subtree (V”,S") by
defining S'(a,b) = S(a,b) NV, fora, be V' i
REMARK. If (V’,5’) is a subtree of a Herrlich tree (V, S), and a, b € V7, the"
S'(a,b) = S(a,b)NV'. For if v € S(a,b)N V', then

S'(a,b) N S'(a,v) N §'(v,b) C S(a,b) N S(a,v) N S(v,b) = {v}

and the reverse inclusion is immediate from the definition of subtree. Thus ‘
(V', 8") is a subtree, then S’ is determined by V'.

We can now prove our main result on Herrlich trees.

Theorem 3. Let (V,S) be a Herrlich tree. Then there exist an orde
abelian group A, a A-tree (X,d) and a 1 —1 mapping ¢ : V — X such tha
for all a, b€ V, $(S(a,b)) = [#(a), #(3)] N $(V). .

Proof. Let ¥ be the set of subtrees (V’, ') of (V, S) with V' finite. For evedi
finite subset X of V, let
={(V,S)eE X CV'}.

Then if Y is also a finite subset of V, ax vy C axNay, and ax # @ by Lemma
7. As in Theorem 1, there is an ultrafilter D in P(X) such that ax € D fom
all finite subsets X of V.

8 e
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For (V',8") € X, let dy be the path metric on V' derived from its structure
nn o simplicial tree, as described in Lemma (2.1)(b) of [5]. By Lemma 4,
(V' dy:) is a Z-tree.

Put X = [[vr,snes V'/D with metric d = [[(v+,sex dv+/D. By Lemma 5,
(V.d) is a A-tree, where A = Z¥/D. Let (V',5’) € &, and choose zy/ € V'.
Deline ¢y : V= V' by

z, ifzeV

dv(z) = {xvr, otherwise
and define ¢ : V. — X by ¢(z) = (¢vi(z))(v',snex.- Now for z € V and
(V8 € X, z € V'if and only if (V',5') € a(s, hence ¢yi(z) = z for
all (V',8') € agz). Since agzy € D, we have ¢(z) = (yvr,s)(v+.s)ex if and
only if g 9 = z for almost all (V',5’). It follows that ¢ is 1 — 1, and is
independent of the choice of the points zy.

Suppose that z € S(z,y), where z, y € V. Then for (V',5') € a(zy,.},
: « S'(z,y) by the remark preceding the theorem. Also, by Lemma 2.1 in
[%] and the note after Lemma 4, S’(z,y) is the segment [z,y] in the Z-tree
(V,dy+), hence by Lemma 1, for all (V',5’) € ayz4,2,

dvi(z,y) = dvi(z,2) + dvi(z,y).

Yinee z, y, z € V' this is the same as

dy:(¢vi(z), $v:(y)) = dv:($v:(2), v:(2)) + dvi(v:(2), dv:(v))-
Hinee agzy,z3 € D, it follows that

d(¢(z), 6(y)) = d(8(<), 4(2)) + d(4(2), ¢(y))

snd by Lemma 1, ¢(2) € [¢(z), d(y)].
(‘onversely, suppose ¢(z) € [¢(z), #(y)]. By Lemma 1,

d(¢(z), $(y)) = d(4(2), 6(2)) + d(¢(2), $(y))

which means that, for some A € D,

dvi(¢vi(z), $v:(y)) = dvi(¢v(z), $v:(2)) + dvi(v(2), bv:(y))

tor all (V',8) € A. Now if (V',5") € AN afpzyy (2 non-empty set since
it belongs to D), we have dy/(z,y) = dvi(z,2) + dvi(z,y). By Lemma 1,
o S'(z,y) € S(z,y). This completes the proof.

'l'y prove an analogue of Theorem 2, it seems easiest to make use of Theorem
', bt we first need another observation. If (V, S) is a finite Herrlich tree, and
eV, let (V, <) be the corresponding order tree as defined at the beginning
ol this section. Then this ordering makes V' into the vertex set of a simplicial
tiee, as described just hefore Theorein 1. We note that this is the samne
aimplicial tree structure as that piven by Lemma 2.1 in [5].
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say . Then z < y. If 2 < 2 < y, then z € S(p,y) = S(p,z) U S(z,y)
Axiom (v). If 2 € S(p, z) then z < z, so z = z, while if z € S(z,y) then 2z
either ¢ or y. Thus there is no z such that z < z < y.

For suppose S(z,y) = {z,y} and = # y. Then u(p,z,y) is either = ort%

Conversely, suppose z < y and there is no z such that z < z < y. Lef
u € S(z,y). By Axiom (v) u € S(p,y), that is, v < y. Again by Axiom (V
z € S(p,y) = S(p,u) U S(u,y), so either z < uor z € S(u,y). f z € S(u,y
then z, u € S(u,y) N S(u,z) N S(z,y), so ¢ = u by Axiom (iv). In any casd
z < u <y, so either £ = u or u =y, and S(z,y) = {z,y} has two elementsy

Theorem 4. Let (V,S) be a Herrlich tree with V' countably infinite. Th
there exist an R-tree (X,d) and a 1 — 1 mapping ¢ : V — X such that, fe

ala, be 'V, ¢(5(a,b)) = [¢(a), 4(6)] N (V). é

Proof. Choose a basepoint p € V and enumerate V as V = {zo,21,...}
where 2o = p. View V as an order tree as at the beginning of §4 and car; ie;“
out the construction in the proof of Theorem 2, to obtain an embedding @
V in an R-tree (X, d). We use the notation of the proof of Theorem 2, ang
write V, for V(X,). Using Lemma 7, we may choose the enumeration so tha]
there is a subsequence V,,,V,,, ... such that there is a subtree (Vy,,Sn;) 4
(V,8) for ¢ > 1. As in Theorem 2, we identify = and ¢(z) for z € V.

Suppose z € S(z,y), where z, y € V. For sufficiently large : we have ’
y, 2 € V,,. By the remarks preceding the theorem, using Property (ii) iy
the proof of Theorem 2, and Lemma 1, dn,(2,y) = dn, (2, 2) + dn;(2,y), anl
taking limits as ¢ — oo shows that z belongs to the segment [¢,y] in X, ag;a
by Lemma 1.

Suppose z € V and z ¢ S(z,y). We can choose n such that z, y, z €
and n = n; for some ¢. Then by a calculation like that at the end of the prog
of Theorem 2, replacing p, z, y by , z, y, we see that z ¢ [z,y]. This finishd
the proof. 4

X, or at least that this is true when X is replaced by the subtree spanned :.:'
#(P). However, it is easy to see that no such result can hold in general. Fy
take P = RU{—oo} with the usual ordering, and let 4 be the the translatiof
z — =+ 1 on R, with y(—o0) = —oo. Then (identifying z with ¢(z) fd
z € P), 4

d(7(=00),7(0)) = d(—00,0) + d(0,1) > d(—00,0).

Also, R U {—o0} is a Herrlich tree, where S(x,y) is the segment [z,y] ii
the usual sense, and the mapping v defined above is a morphism of Herrlic|
trees (see 2.2 in [5]). Thus in Theorem 3, a morphism f : (V,S) — (V, S) wil
not, in general, extend to an isometry of X into X.
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The mathematician who had little
wisdom: a story and some

mathematics

DANIEL E. COHEN

1. The Story

If any of you who read this volume do not like stories, then I am sorry fo:
you. Stories are the thread from which the fabric of the world is woven, an
to dislike stories is to dislike life. But, to any such people, I would also say}
that if you read this story you will also learn some mathematics. ff
Once there was a mathematician who had little wisdom. One spring he
attended a group theory conference in Scotland, which may or may not have
been wise of him. Since the conference was long, he decided to take a coupld]
of days off, which was certainly wise. He had heard much about the beauty

to go salmon-fishing. He did not think of the need for a licence, nor that
large charge is made for the right to fish for salmon in most places; indeed}
he had not even checked whether there were salmon in the rivers at that timé
of year. This may seem foolish of him, but turned out not to be so. ,

He went to the Tweed, which was running sweetly. He saw many peopl'

fishing for salmon, but found a pool where no-one was. Not thinking tha§
this might be because that was not a good place for salmon (for he had litt14
wisdom, though, as we shall see, he was also lucky), he began fishing undej
a bright spring sky. And, after he had been fishing for some time, he caughf§
a fine salmon, and, after a struggle, landed it. Great was his surprise whet
the salmon spoke to him. “Put me back” it said; “put me back in the rivef
before I die.” 4

The mathematician was wise enough to do as the salmon asked. I hav§
heard some suggest that he should have kept the salmon in a tank, and mad§

much money by exhibiting it as a talking fish. Even on the everyda.y levels

than as something sacred, has led us to the brink of disaster. Be that as
may, to treat the creatures of the inner worlds in such a way is a certaid]
recipe for disaster. i

Wisdom. I have fed on the Nuts of Knowledge that fa.ll from the hazel tre T
which leans over the Well at the World’s End. Since you have set me free, |
will grant you a gift.”
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Now the mathematician had been thinking hard about a certain finite pre-
selation of a group. “What I want”, said he, “is a machine that will tell
me whether or not a word in the generators equals one in the group I have
1ecently been considering.”

The salmon replied “I must warn you that if you ask me for something
impossible I will vanish, and what little wisdom you have may become even
lenn.”

“I'hat’s no problem” answered the mathematician. “I know that there are
some finite presentations for which no such machine exists, but I have shown
{had in this case it can be done.”

So the salmon swam deeper into the river, and returned carrying a little
mmachine. It looked very delicate and attractive, and the mathematician was
delighted by it. He took it home, and used it with great pleasure for several
weeks. He enjoyed looking at it, for it was indeed a work of art, and his eyes
kept, following the tracery of lights that showed the machine was operating,
linishing with either a green light or a red one. Since this machine was not
ol the ordinary world, it never ran out of memory in which to perform the
vumputation.

But after a while the mathematician, who had little wisdom, became dissat-
ilied, and decided to ask the salmon for a more powerful machine. He went
hack, with the machine, to the pool where he had first caught the salmon.
I'he river was running high, and the skies were grey, but he did not notice
that. “Salmon,” he called, “Great Salmon of Wisdom, I desire a gift from
yolulr -,

‘I'he salmon came up to the surface and spoke. “What is it this time?”

“I'his machine is very nice, but I would like a machine that does more.
Inntead of one that just shows a green light when the word equals one, 1
would like one that actually tells me how to write that word as a product of
vonjugates of the relators and their inverses.”

“Remember, if you ask for the impossible, I will vanish and you may lose
even what little wisdom you have.”

“I feel quite sure that, since you have given me one machine, you can also
g1ve me the more powerful one I desire.”

“You are right” said the salmon, and swam deeper into the river. He
emerged carrying a heavy and ugly machine. The mathematician dragged it
home. For several weeks he was happy using it.

BBut after a while, since he had little wisdom, he became dissatisfied, and
dlecided to ask the salmon for a more powerful machine. With an effort, he
rappged the machine back to the pool where he had first seen the salmon.
Il was a hard journey, under a black sky, with thunder in the distance, and
ahowers of hail. When he arrived, the river was in flood, and lapped almost
1o his [eet. Since he had little wisdom, he did not see what this had to do
with him, and once more called outl “Salmon, Great Salmon of Wisdom, 1
desire a gift, from you.”
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The salmon came up, and asked what he wanted this time. “This machinéﬁ
does what I asked for, but it is so slow. There have been many occasions when}é
a word for which the first machine answered my question in a few seconds;
has taken days on this new one. What I want now is a machine which will do:
what the second machine does, but will do it as fast as the first machine.”

“I’'m getting tired of your demands” said the salmon crossly. “Is that what}
you really want?” The mathematician, who had little wisdom, did not notice
the warning in the salmon’s tone, and said, firmly, “Yes, that’s what I want.”

At that, the salmon leapt into air, cried out “What you ask is impossible!”,
and fell back into the river with a splash that drenched the mathematician;
When he recovered from being soaked, the salmon and the machine weré
gone. ,

As he began to start homewards, the salmon appeared briefly, and said
“Read computer science journals, as well as mathematics journals. Then,

some.’
When the mathematician returned to his home university, he did as th
salmon had suggested, and started to look at computer science journals, ind
cluding back issues. He discovered, to his surprise, that they contained
significant number of interesting results in group theory, and he learned why
his last request was impossible, since there are presentations (of which hig
was one) for which the word problem has an easy solution, but for which an;
solution of the special kmd asked for is dlfﬁcult '

And, by doing so, his wisdom had increased.

2. The Mathematics of the Story

This section is based on work of Madlener and Otto [4], and its slig
extension by Cohen, Madlener, and Otto [2]; see also [5]. It will explain thel
mathematics behind what happened to the mathematician of my story.

Let (X; R) be a finite presentation of a group G. A solution to the worg

it does equal 1. s

Here there is no need to make the definition of ‘computable function’ preg
cise. All reasonable definitions lead to the same class of functions. #

It is well known that there are presentations for which the word problemy
has no solution. Since, given two finite presentations of G, it is easy to sed]
that the word problem for one presentation has a solution iff the word problem
for the other has a solution, we then say that the word problem for G has ¢
solution. ;

If w equals 1 in G then wis a product [T§ (u; 'r§fu;) for some k and some
elements r; € Ru; € F(X),and ¢; = +1. A pseudo-natural solution t

[3
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the word problem is a computable function which, as before, says “No” if w
iloes not equal 1 in G, and if w does equal 1 it explicitly gives the elements
t..1t,,and €. This is not the definition used in [4], but it is pointed out in {2]
that it is equivalent to the earlier definition.

Il the word problem has a solution, then it has a pseudo-natural solu-
tion. For we first get the answer “Yes” or “No”, and, if the answer is
“Yes” we then proceed to search systematically through all possible choices
ul k,and r;,u;,and ¢; until we find one such that w = [T¥(u;'rf'y;). This
aynlematic search can be done, for instance, by searching in order of magni-
twde of k 4+ 3 |u;| and in some convenient order among those finitely many
peomnibilities for which this sum has a given value.

However, this is a ‘wait-and-see’ approach, in which there is no way of
tolling in advance how long the procedure will take. We just have to wait
nnlil it gives an answer. A function constructed in this way is recursive, but
1n usually not primitive recursive.

I'' look at the question further, we need to consider the complexity of
primitive recursive functions. The Grzegorczyk hierarchy is a collection F,
ul primitive recursive functions for all n such that every primitive recursive
lunction is in some E,, E, C F,4,and E;, # E,;;. To understand the
theorem below, this is all one needs to know, but it seems worthwhile to be
more explicit about the hierarchy. See [1, 7] for details.

One definition uses programs. We need the programs to operate on infinite
svpuences of natural numbers, all but a finite number of which are zero. We
slnrl with some simple programs, such as those which add 1 to or subtract 1
from some entry. We build new programs from old ones by two procedures. If
I" and @Q are programs then PQ is a program which performs first P and then
tJ Also LOOP k P is a program which performs P z times where z is the
k th entry in the sequence. The class of all functions computed by such LOOP
jnoprams is exactly the class of primitive recursive functions. Note that we
know in advance how many times the program LOOP k P performs P. If
we modify our programs so that we can repeat P until a certain condition
in nalisfied then we get the larger class of partial recursive (or computable,
It not necessarily total) functions. The class E, can be defined as the class
il Lhose functions which can be computed by LOOP programs in which the
itepth of nesting the LOOPs is n.

Another definition uses Ackermann functions. There are a number of vari-
ahln of these functions, and there may be a dimension-shift of 1 in the re-
aults, depending on which function we take. The two-variable function A is
delined by certain initial conditions together with the rule A(m+1,n+1) =

Vi, A(m + 1,n)). Thus, if a,, is defined by an(n) = A(m,n), then am4y
i= elined by iterating a,,, and each a,, is primitive recursive. However, A is
teemsive but not primitive recursive.

One of the nice properties of the class E, is that a function is in E, iff it
van be computed by a LOOP program in a time which is itsell an £, function
of the nput.
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We say that a function f is defined from functions ¢,k and k by bounde
primitive recursion if f is given by f(zy,...,2,,0) = g(z1,...,2,) ands
f(z1y .. s zry+1) = (21, .., 20, y, f(21,. .., 2, y)) — these two conditions:‘
just say that f comes by primitive recursion from g and 2~ — and, in a/ddition;g
f(z1y. -y @r,y) < k(z1,...,2,,y). Then the class E, can be defined to be:
the sma.llest class containing both a,, and some simple initial functions and*
closed under composition and bounded primitive recursion. Most functlon,
of importance are in E3 (which is sometimes called the class of elementarg
functions. By contrast, as, and even a4, while computable in theory, grows
too quickly to be computable in practice. 4

If we want to look at the complexity of functions defined on words (or moréj
general objects), the obvious way to do so is to code these up into numbers,
There are usually several ways of doing this, which give the same notion of the
class F,, provided n > 3. Also, when we change presentations, the complexi
classes of solutions and of pseudo-natural solutions remain unchanged if this
class is at least 3. It is for this reason that we only look at complexity ak
least 3 in our theorem.

Theorem There is a presentation for which the word problem has a solution
in E3 but which has no primitive recursive pseudo-natural solution. :

More generally, if 3 < m < n, there is a presentation for which the word
problem has a solution in E,, but no solution in E,_,, there is no pseudf
natural solution in E,_,, and some pseudo-natural solution is tn E,,. :

This result is surprising at first sight, since it is hard to imagine how ongj
could solve the word problem without using a pseudo-natural solution. 7;;
situation is clarified by looking at the similar situation for machines (equi
alently, programs). A solution for the halting problem of a machine (or pr’
gram) will be a computable function which, on a given input, answers “Yes}
or “No” according to whether the machine does or does not halt on the gives
input. Given a machine, we can construct a corresponding group, and we obi
tain a group with unsolvable word problem from a machine with unsolvablé
halting problem (such machines exist, by general theory). A more preci
analysis shows that, for n > 3, the word problem has a solution in E, iff t
corresponding machine has a halting problem with solution in E,. :

A pseudo-natural solution to the halting problem will, on an input fron
which the machine halts, give the computation of the machine from thaf
input. Note that among the pseudo-natural solutions there is one natural s
lution; namely, run the original machine and make a note of its computation
Agam we find that, for n > 3, the group has a pseudo-natural solution is

» iff the machine has a pseudo-natural solution in E,. Also, this holds 1ﬁ
the run-time of the machine (that is, the number of steps taken to halt if thq
machine does halt on that input, and 0 if the machine does not ha.lt) isin E,,.

Now let f be a function which is recursive but not primitive recursive. Thed

it can be computed by a machine, which necessarily halts when started on
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u configuration corresponding to a natural number. If we start the machine
un an arbitrary configuration, however, it may not halt. But it can be shown
|6, 3] that we can alter the machine so that it halts when started on any
vonfiguration. In this case, the halting problem has the very easy solution
which always answers “Yes”. But, since the function is not primitiverecursive,
iln run-time (and hence, any pseudo-natural solution) cannot be primitive
1ecursive.

2. Computer Science Journals and Group Theory

Many group-theorists will know of the International Journal of Algebra and
 ‘'vinputing, whose first issue came out a couple of years ago. This always
+untains material of interest, and is as much a journal of mathematics as it is
une of computer science. The Journal of Symbolic Computation is primarily
# computer science journal, but regularly has material of interest to group-
{heorists and other algebraists. In particular, the issues 56 of volume 9
(1990) and 4-5 of volume 12 (1991) are on computational group theory.

But other computer science journals do have relevant papers sufficiently
ullen to be worth glancing at regularly, as do the Springer Lecture Notes in
t 'omputer Science. These include Theoretical Computer Science, Acta Infor-
malica, Journal of Computer and System Science, and Journal of Algorithms,
sll of which have contained more than one paper of interest. Other computer
wicnce journals also contain relevant material occasionally. I have prepared a
anrvey (not comprehensive, but based on personal preference) of some thirty
papers. This is too long to include here, but may be obtained from me by mail
{School of Mathematical Sciences, Queen Mary and Westfield College, Mile
Ind Rd., London E1 4NS) or e-mail me (D.E.Cohen@maths.qmw.ac.uk).
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Palindromic automorphisms
of free groups

DoNaALD J. COLLINS

{ Introduction

la:l I" be a free group with a given finite basis X. Let w be a word in X, say

w=ze? .. T,

I'he reverse of w is the word
W=z, ... oy

A {reduced) word w in X will be called a palindrome if it coincides with its
irverse. An automorphism a of F' will be called palindromic (relative to the
banis X) if | for every z € X, the image za is (represented by) a palindrome.
It 1 not hard to show that the set of all palindromic automorphisms of F' is
n nubgroup of the full group Aut(F') of automorphisms of F'; we shall denote
it hy IIA(F)

Subgroups of Aut(F') are not, in general, well understood; a notable exam-
e is the lack of any known set of defining relations for the subgroup TA(F),
i kernel of the map to Aut(F/F'). The group IIA(F) of palindromic auto-
murphisms lies towards the opposite extreme to I A(F') being almost a supple-
ment to the latter — the image of ITA(F') in Aut(F/F") is the group generated
v the squares of the transvections together with the permutations and inver-
alons of the basis elements. The intersection of IIA(F) with TA(F') is, how-
#ver, non-trivial, containing, for instance in the case that F has basis {z, y, z}
the antomorphism whose action is « — zyz 'y ley~lz lyz, yo y, 2> 2.

In this paper we show that the group IIA(F') is generated by a finite set
l ‘elementary’ palindromic automorphisms subject to a finite set of defining
irlations. An easy argument (passing to the quotient by F'F?) shows that
il v is palindromic, then za has odd length, for every ¢ € X, and may
In: written in the form @,(z7)%*u,, €, = +1, where 7 is a permutation of
the basis X. Since any automorphism of F' which permutes the basis X is
vleatly palindromic, the essential part of the discussion is that concerned with
ithe pure palindromic automorphisms, i.e. those automorphisms o« for which
IXTR V. 2ol T

We use the following notation and terminology. By a factor automorphism
# ol I' is meant an automorphism which inverts some of the elements of the
lwms X, For each pair @, y of distinct elements of X, the automorphism
11}u) of F given by
‘ { r o yzy

(flw) T .



64 Palindromic automorphisms of free groupd
will be called elementary palindromic. The factor automorphism o, whichﬁ
inverts only the single basis element y will also be called elementary.

Theorem The group PIIA(F) of pure palindromic automorphisms of the fregi
group F(X) of finite rank is the semidirect product of the group EIIA(F)
generated by the set

{(zlly) =, y€ X, = #y} ﬂi

of elementary palindromic automorphisms, and the group ® of factor auto_‘
morphisms. The relations :

(ell=)ull2) = Wlele) ()

(all2)(wllt) = wllt)(al]2) (2}
()l = Gl oll)al) ™ (sf

E’IIA(F) The group ® is an elementary abelian 2-group generated by t_f
automorphisms {0, : & € X} and the action of ® on ENLA(F) is given bf

53 (zlly)oy = (zll9). ]

The presentation of EIIA(F') is similar to the presentation of the groufj
PTA(F) of pure symmetric automorphisms studied by the author in [C]. A
automorphism of F(X) is pure symmetric if , for each z € X, the ima,
za = u;'zu,, for some word ug, i.e. za is conjugate to z. An elementa
symmetrlc automorphism of F((X) is an automorphism, denoted by (z|y) wit}§
z and y distinct elements of the basis X, whose action is 3

Jr—oyly
(aly) { if z# z.

ZzZ— 2z

Such automorphisms generate PXA(F) subject to the defining relations §
(z|2)(y]2) = (y12)(z|2)

(z]2)(ylt) = (ylt)(<l2) %

(z]2)(yl2)(=ly) = (zly)(y]2)(zl2) &

with the same conventions on the use of distinct letters as in the theoreg§
above. (This is implicit in [FR] and is spelled out in detail in [G].) 3
This parallel raises questions about the group ETIA(F'). For example can af
alternative argument for obtaining a presentation be given using Whitehea
automorphisms? If so this would suggest that one could calculate the virtuag
cohomological dimension of ETIA(F) by employing the method of [CV] as wal
done in [C] for PXA(F) - it also may be the case that ETIA(F) is torsion-fre§
since PLA(F) is torsion-free. |
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2 Generation

1=t

2.1 Lemma For any word w, W™~
2.2 Proposition The group PILA(F) of pure palindromic automorphisms is
grnerated by the elementary palindromic and factor automorphisms.

I'roof. For a € PILA(F), define L(a) = ) |za| where |za| is the length of

zeX
rev relative to the basis X.

The argument is a “Nielsen cancellation argument” by induction on L(a).
The case L(a) = 01is clearly trivial ; so suppose L(e) > 0. By Proposition 2.13
ol |1.S] the set {u,z*u, : z € X} is not Nielsen reduced. Since all the words
W, r"*u, have odd length it follows that condition (N2) [LS,p.6] is not relevant.
Hence, without loss of generality, there exist distinct elements ¢ and y of X
md 7z, 1y = %1 such that in cancelling the product (T,z=u;)" (Tyyruy)™
the displayed z°"= is cancelled by a letter of @, (if 5, = 1) or of u;* (if
, —1). Routine calculations show that one of the following then holds:

(1) g =ny =1, L((yl|z)e) < L();

(h) ne = =1, ny =1, L({yl|z)oya) < L(e);
() 1z =1, ny = =1, L((yllz)'a) < L();
() 5z =ny = -1, L((yllz)*oye) < L(e).

T'he result thus follows.

# Defining Relations

‘I show that the relations displayed in the Theorem form a set of defining
irlations we shall give an argument which parallels that in [FR]. For this we
vunsider products 4392 -« - s of elementary palindromic automorphisms and
their inverses. The diagram of such a product is the sequence (i, I3,..., l)
where I; = L(~; -+ ,). The diagram is monotone if Iy > I3 > ... > I, or
+ ).

#.1 Proposition Every product 172 - - -7, is equivalent modulo the relations
(1) (3) of the theorem to a product with a monotone diagram.

Once the proposition is established the theorem is essentially immediate.
F'ustly, the relations giving the action of the factor automorphisms enable
vne Lo write any word € in the generators as a product 8 = 91y, - - - 45 where
¢ 11 o factor automorphism and 412 - -+ 7y, is a product of elementary palin-
droniic automorphisms and their inverses. The proposition enables one to
annnine that the diagram ol 4,7, - - - v, is monotone. If @ represents the iden-
1y automorphism, it follows that L(yy2---7,) = 0, since clearly applica-
tion ol a factor automorphism will not. alter the value obtained by applying
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L. Therefore 1792 - - -vs is the empty product. It is obvious that the group
® is elementary abelian of exponent 2 and there is nothing further to prove
- except, of course, to check by direct calculation that the relations (1)-(3) °
are valid. In the process we have shown that the claimed semidirect product :
structure occurs. ';

It is convenient to extend our notation (z||y) to include the the possibil- |
ity that z and y are inverses of elements of the basis X. When we do this
we observe that (¢7*||y™") = (zlly) and that (z|ly)™" = (z|ly™") = (z7|ly).}
Formally we have enlarged our presentation by the use of Tietze transforma-
tions and when we do this, simple calculations show that we can extend the
relations of the type (1) - (3) so that the letters are interpreted as standing?
for elements of the set X U X~!. In what follows we shall use letters such as’
z, y, 2, t to stand for elements of X U X 1. :

3.2 Lemma Any product 11y, has monotone diagram, unless v, = i!.

Proof. The diagram is of the form (I,1) where | = L{m7y;). Let v1v. =
(zlly)(#||t), making no assumptions on z, y, z and ¢ other than are necessary’
so that the notatlon is well-defined. Various cases occur.

Case 1. ¢ = z*!; without loss of generality z = z. Then z1,7; = ytzty whllefia
2y172 = z so that L(v1y2) = 2, since y # ¢t~ ]
Case 2. z # 2%, y = t*'. This time zy17, = yzy while 271y, = tzt and'
again L(my,) = 2.
Case 3. z # z*!, y # t*'. Here y = z*! is possible and while zy,7, _i

K

tzt, there are two possibilities for z717,, namely yzy (if y # 2z*') a,ndf
tilyt=tl ztFytt! (if y = 2*1). In the latter case a little cancellation is posmble.g
but still L( 7172) > 2 as required.

We now proceed to the proof of the Proposition, which is effectively a,n,g
induction with the initial case now having been disposed of. Formally we are;
given a product Y172 - - - 7, with diagram (l, Iy,..., I,). If this is not mon0<.<
tone then, using Lemma 3.2 it follows that there must existr, 1 <r<s sucl!;i
that I,y <1, > l,41 > ... > l;. We show that by using (the extended) rela.-%’
tions (1)-(3), we can erte Yre1Yr = Oy--- 8y s0 that L(6; - b¥r41 -+ 7s) qa
L(vy,--+7), for 2 < j < q. If we use the pair (s — r,1,) with lexicographid}
ordering as an inductive measure, then replacing v,_17, by ;- -- 8, reduce
this measure as required (possibly after eliminating inverse pairs in the new@
product). L

The problem to be solved is therefore the following: suppose we are glve
arbitrary ¢, (z||y) and (z|[t) such that

L{(=|ly)(=118)¢) < L{(=1£)¢) > L(C),

can we then find a product 6, - - - §; equivalent modulo (1)-(3) to (a:”y)(z”t)
such that :

e a8 &2

L(6; -~ 6,0) < L{(=][1)¢)
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lor2<j<gq.
We fix the following notation:

(= Ug Uy, YO = Ty ¥y, 20 = U, 2°7u,, 10 = Wit u,.

'I'he argument proceeds by case analysis, the different cases being dependent
upon the coincidences among the sets {z,z7'}, {y,y71}, {2,271}, {¢,¢71}.

Uase I. Suppose that either there are no coincidences or that {y,y~'} =
{t,¢=1}, but this is the only coincidence. We take 6,6, = (z||t)(z]]y), using
(1)-(2). It suffices to show L((z|ly)¢) < L(¢). However this is immediate
nince the difference between L((z||y)(2||t)¢) and L((z]]t)¢) arises solely from
the difference between the respective images of z and we see that

z(e|ly)(z[[t)¢ = e(zlly)(, z(2][t)¢ = ¢

Case II. Suppose that {2,271} = {z,z'}; then {y,y"'} and {¢,¢7!} must
he distinet from {z,z~'} but we allow the possibility that they coincide.
Without loss of generality , £ = 2. So we have

L((=1ly)(=]1£)¢) < L((=|I£)¢) > L(C).
T'he inequality L((z][t)¢) > L(¢) is equivalent to |(tzt)¢| > |z(], i.e. to
[Tt wsTo T up Tt ug| > [Tz Uy (11.0.1)

T'he displayed occurrences of ¢ are not therefore cancelled in the process of
teducing to normal form. If p is the normal form of u,%; then the reduced
form of z(z||t){ = (txt)( is
(A) UL P pt=u,
or
(A) Ut G o gl uy,.
In turn a partially reduced form of z(z||y)(z||t)( is

(nB) Uy YV u, U™ P ptou U, y*vu,
or
(B Uy Y™ Uy Ut G~ g™ u, Uy y v u,
with the latter case occurring whenever p = z°¢ and %; = u;'p. Therefore
the inequality L((z||ly)(z||t)¢) < L{(z]|t){) is equivalent to

I(B)| <I(A)] o, if appropriate,  |(B')] < |(A")] (11.0.2),

where |(B)| denotes the length of the fully reduced form of (B).

Subcase IL1. Suppose |ui| > |uy|; to achieve (I11.0.2), u; = vy~*u,?, for
“ome v, and the inequality must actually be strict. The relation (3) on this
vecasion yields

I

ly ™)) Elly) (=lly™)
= 5|525364.

(z[ly)(=||t)

We need, therelore, to establish the inequalities
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L((zlly ™)) < L((=][t)¢) (I1.1.1)

L((tlly)(=lly™)C) < L((=ll¢)() (I1.1.2) ,
L((=]lO)tlly)(=lly™)¢) < L{(=][£)S)- (11.1.3)°

i
Y

Since p = u,U; = uzuy'y~*¥T, (I1.1.1) is equivalent to ;

|luy o™ pz=po~ 7l < uy, ly vt pate pttuy o | (11 14)*
which holds regardless of whether the right hand side refers to (A) or (A’). | ;'

For I1.1.2 we have to examine the various images of ¢ and z. Noting tha,ti
16364 = 163, £6364 = xb4 and t(z||t) = t, I11.1.2 turns out to be equivalent to ;

lz(lly=™)¢1 + 1l < lz(elit)] + 1EC]- (I1.1. 5)ﬂ

However 11.1.1, which depends only on the images of z, actually implies that
it suffices to prove that

[CEly)C] < el (1 ~loGI§

which amounts to proving

S med i e S

[@,vtvuy| < [@; 'y~ votoy~va,’|.

This, however, is immediate since the word on the right hand side is reduced i
Fmally 11.1.3 reduces firstly to

|l=(z11£)(Elly)(lly ™) + [t(elly)S < le(llE)C] + [¢C] i
and then, by I1.1.6, to |z(z|[t)(t||ly)(z]ly~")] < |z(z||t)¢]- In the light of thea

previous calculations, this amounts to showing

— Eg

[T, ot P pt*tvu,| < |u'1y'e”vt"’p3: pttoy” "’u'1|

i
l
’i
which is immediate, regardless of whether the right hand side refers to (A}); f
or (A'). j
Subcase I1.2. Suppose that |u;| < |uy|. From I1.0.2 we must have (at least
uy = vt™*%; ', for some v. From an instance of the relation (3) we obtain .;

=lly)llt) = @l () ()]l
(Il ) zlly) (i)
61626354.

Il

We again have three inequalities to establish, namely
i

L((yllt)) < L{(=[]t)¢) (11.2.1)
L((2|ly)(ll)¢) < L((zl[t)) (11:2.2)
LIt )=l (l)C) < L{(2l16))- (11.2.3)
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Now I1.2.1 is equivalent to |z{| + |(tyt){| < |(tzt)¢| + |y¢|. By 11.0.1 it
uuffices to prove that |(tyt)(| < |y(|, i.e. that
[T Ty vug| < [u; Ty ot . (11.2.4)

Since the word on the right hand side is already in normal form this is im-
mediate.
Next we observe that 17.2.2 is equivalent to

|(tytatyt)(] + [(tyt)C| < |(Ezt)C] + lyC]-
Ilaving established 17.2.4, it suffices to prove |(tytztyt)(| < |(tzt)(], i.e. that
[0y vz pry vus| < |[TtT P ptttuy| (11.2.5)

where p is the reduced form of of u,u;. We know that v = u,@:t** so that the
incquality 17.0.2 becomes

|u o vy v upz e poy ot~ | < [Tt et pt
where at most one cancellation is possible in pz®=p It therefore follows that
[oy*vvpz®= pty*vv| < [Pz p

whence 11.2.5 is obtained. Finally, since y(y||t~)(z||y)(yllt) = y, 11.2.3 is
equivalent to 11.2.5 which we have just established.

Subcase I1.3. Suppose that |u;| = |u,|; then 11.0.2 forces, at least, @ <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>